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ABSTRACT
Discharge data used to calibrate and evaluate hydrological models can be highly uncertain and this
uncertainty affects the conclusions that we can draw from modelling results. We investigated the role of
discharge data uncertainty and its representation in hydrological model calibration to give recommenda-
tions on methods to account for data uncertainty. We tested five different representations of discharge
data uncertainty in calibrating the HBV-model for three Swiss catchments, ranging from using no
information to using full empirical probability distributions for each time step. We developed a new
objective function to include discharge data uncertainty, as quantified by these distributions directly in
calibration to hydrological time series. This new objective function provided more reliable results than
using no data uncertainty or multiple realizations of discharge time series. We recommend using the new
objective function in combination with empirical or triangular distributions of the discharge data
uncertainty.
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1. Introduction

Uncertainty in discharge data propagates to uncertainty about
the conclusions that we can draw from hydrological analyses
based on discharge data. For example, this uncertainty may
obscure detection of temporal change (Juston et al. 2014,
Wilby et al. 2017), identification of design floods (Di
Baldassarre et al. 2012, Steinbakk et al. 2016), analyses of
differences in catchment behaviour (Westerberg et al. 2016),
and identification of reliable model-based estimates (Liu et al.
2009, Sikorska et al. 2013). Discharge data uncertainties can
also directly propagate to increased costs and sub-optimal
decisions in water management (McMillan et al. 2017a). It is,
therefore, essential to take data uncertainties into account in
the design of hydrological analyses so that their impacts can be
quantified or excluded (Westerberg and McMillan 2015).

The main source of discharge data uncertainty is typically
the indirect calculation of discharge from stage (water level)
using a model of the stage–discharge relationship at the gau-
ging site. This model (i.e., the rating curve) is fitted to stage–
discharge gauging pairs, which have been measured simulta-
neously at different flow conditions. Ideally, such gauging pairs
should be collected over the entire rating curve range, but this
is usually impossible as extremely low and high flows occur, by
definition, seldomly. The rating curve is, thus, often particu-
larly uncertain at these extreme flows as a result of the rating
curve extrapolation. Typical discharge uncertainties are in the
order of ±20–80% for low flows, ±10–15% for average flows,
and ±15–40% for high flows (McMillan et al. 2012, Westerberg
et al. 2016), but there is a sizeable site-specific variability
(Coxon et al. 2015), in particular where the stage–discharge
relationship varies temporally (Jalbert et al. 2011) or is not

unique because of hysteresis or backwater effects (Mansanarez
et al. 2016).

Quantification of discharge uncertainty has long been
researched (Herschy 1970, Pelletier 1988), and in recent years
new methods for the estimation of rating-curve uncertainty have
been developed, ranging from methods producing estimates of
upper and lower uncertainty limits (Westerberg et al. 2011a,
Coxon et al. 2015) to those using Bayesian Markov Chain
Monte Carlo (MCMC) techniques to estimate a full posterior
distribution of discharge (Petersen-Overleir et al. 2009, Sikorska
et al. 2013, Le Coz et al. 2014, Juston et al. 2014, McMillan and
Westerberg 2015). Apart from the uncertainty estimation techni-
que, the methods differ in their treatment of temporal variability
in the rating curve uncertainty (Tomkins 2012,Morlot et al. 2014)
and in their assumptions about the separation of different uncer-
tainty components (i.e., measurement, parameter, and structural
uncertainty). Kiang et al. (2018) provide a comprehensive com-
parison of different rating curve uncertainty estimation methods
and find the largest differences between methods at low and high
flows, when the rating curve varies with time, and when it is
extrapolated to ungauged flows. Uncertainty in rating curve esti-
mates directly leads to uncertainty in discharge data based on
these estimates.

In this study we investigated the impact of discharge data
uncertainty on model calibration and evaluation. When cali-
brating a hydrological model, discharge data uncertainty can
obscure and bias model parameter identification, affect simu-
lation results, and lead to wrong conclusions about the model
structure and its performance. Several methods to account for
discharge data uncertainty in model calibration have been
developed (e.g. Liu et al. 2009, Thyer et al. 2009, McMillan
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et al. 2010, Westerberg et al. 2011b, Sikorska and Renard
2017). Such calibration methods differ primarily in four meth-
odological aspects linked to: (a) the type of discharge data
uncertainty information that is used, e.g. upper and lower
bounds (Coxon et al. 2013), or full empirical discharge realiza-
tions or distributions (McMillan et al. 2010); (b) the assump-
tions about the discharge data errors, e.g. assumptions about
the temporal error autocorrelation; (c) the type of calibration,
i.e., whether the objective function uses the discharge time
series directly (Liu et al. 2009), or is based on hydrological
signatures to which the discharge uncertainty is propagated
(Blazkova and Beven 2009); and (d) the assumptions about
how the uncertainty in discharge data interacts with other
uncertainty components such as uncertainty in input data,
model structure and model parameters (Renard et al. 2010,
Krueger et al. 2010, Westerberg and Birkel 2015).

The aim of this study was to investigate the role of discharge
data uncertainty in hydrological model calibration to give recom-
mendations on methods to account for data uncertainty. We
focused on the type of discharge data uncertainty information
that is needed (the first of the four abovementioned methodolo-
gical aspects) and we limited the study to model calibration
against uncertain discharge time series directly, i.e., we did not
investigate calibration to hydrological signatures (the third aspect
above). We focused our analysis on three specific objectives:

(1) What is the impact of including or excluding discharge
data uncertainty in model calibration on the resulting
simulations?

(2) How much information about the discharge data
uncertainty distribution is needed in the objective func-
tion to obtain reliable model simulations?

(3) What is the impact of allowing for model simulations
outside the estimated discharge data uncertainty in the
objective function?

To be able to address these questions, the discharge data
uncertainty needs to be incorporated into the model calibra-
tion. We developed a new objective function capable of incor-
porating different types of information on discharge data
uncertainty and tested it for three Swiss catchments with
different properties and rating curves.

2. Study catchments, data and discharge data
uncertainty estimation

2.1. Study catchments

For our study, we selected three Swiss meso-scale catchments
(Fig. 1) that had comprehensive information available about
rating curves, gaugings and site-specific conditions. One catch-
ment is located in the Bernese Alps (Kander-Hondrich) and
has a small areal glacier cover, whereas the other two catch-
ments extend from the pre-alps to the Swiss Plateau (Broye-
Payerne in the West and Wigger-Zofingen in northern central
Switzerland) and are not glacierized (Table 1).

2.2. Data for discharge uncertainty estimation

We used the stage–discharge gauging data and the 10-minute
water-level time series data (1980–2014) for each catchment outlet
gauging station to estimate rating-curve and discharge uncer-
tainty. For each gauging station, more than 150 stage–discharge
gauging pairs were available for this period (193, 165, and 153
gaugings at Payerne, Hondrich, and Zofingen respectively)
together with around 40 official rating curves at each station that
had been used historically. These data were analysed for temporal
variability, and we found neither major systematic variability nor
major change to the stage–discharge relationship for the stations
in the analysed period. A single rating-curve uncertainty estimate
for the 35 years was therefore used for each of the stations.

Figure 1. Map of Switzerland with the location of the three study catchments and their gauging stations.
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For Zofingen, the rating curve was extrapolated for the
highest 1.5 m (i.e. the maximum water level in 1980–2014
was 1.5 m above the highest stage–discharge gauging). We
extended the available measured stage–discharge data with
two stage–discharge pairs calculated with the Gauckler-
Manning-Strickler formula:

v ¼ 1
n
:R

2=3:S
1=2 (1)

where v is the flow velocity, n the Manning roughness coeffi-
cient, R the hydraulic radius (wetted perimeter divided by
cross-section area) and S the friction slope (see, for instance,
Chow et al. 1988). Using a riverbed cross-section at the gauging
site, discharge Q for a given stage h can be computed as
v multiplied by the cross-section area A. As no accurate infor-
mation was available for slope S at this site, we estimated
S using the roughness coefficient n for which detailed informa-
tion was available, together with the discharge from the two
highest gaugings. Because these two gaugings deviated a lot
from each other, we calculated one estimate of S for each
gauging using Equation (1). To account for data uncertainties,
we assumed normally distributed errors with 95% ranges of
±4% for gauged discharge Qg, ±2 cm for gauged stage hg, and
±20% for roughness coefficient n (Wyder 1998; Hanspeter
Hodel, 10.03.2017, Federal Office for the Environment, personal
communication). We then computed two sets of 1,000 realiza-
tions of Manning estimates of the discharge Qmax at the highest
recorded stage hmax, with random perturbations of Qg, hg, and
n as specified above. These 1,000 estimates of Qmax were
approximately normally distributed, and we used the average
Qmax from each of the 1,000 estimates and its 95% uncertainty
range to specify two additional stage–discharge gaugings with
uncertainty. These two calculated gaugings were then added to
the existing gauging dataset for Zofingen, to help constrain the
high flows in the rating curve uncertainty estimation.

2.3. Discharge data uncertainty estimation

Using the available and extended stage–discharge pairs, we then
estimated rating curve uncertainty for each site in aMonte Carlo
analysis using the Voting Point likelihood method (McMillan
and Westerberg 2015). This method accounts for uncertainties
in the measured stage–discharge gauging data and in the rating-
curve model approximation of the (unknown) true stage–dis-
charge relationship at the cross-section of the gauging station.
We assumed a power-law rating-curve function, commonly
applied in rating-curve estimation and hydraulic studies (Le
Coz et al. 2014). Based on information from the local monitor-
ing agency (Hanspeter Hodel, 10.03.2017, Federal Office for the
Environment, personal communication), we assumed normally

distributed errors for discharge gauging uncertainty with 95%
bounds at ±4% (current meters), ±15% (float gaugings), and
±6% (ADCP, salt dilution, and other techniques) of the mea-
sured values. For stage we used a uniform error of ±5 mm for
low to medium stages and ±20 mm for high stages (i.e. >95th
percentile of the stage time series). The rating curve parameter
priors were set to standardized ranges, similarly to Westerberg
et al. (2016), and were adjusted for each station if necessary.

The rating curve uncertainty assessment resulted in
a posterior distribution of 40,000 feasible power-law parameter
sets for each station. This rating curve uncertainty was then
propagated to the discharge time series by calculating
a corresponding discharge value from each rating curve realiza-
tion for each stage value in the stage time series. This resulted in
a set of 40,000 discharge time series realizations that can be used
directly in the model calibration. Alternatively, a distribution
such as the empirical probability distribution function (pdf) or
a triangular distribution can be estimated from the 40,000 dis-
charge values for each time step, and then used for the model
calibration. Note that these distributions are identical for the
same stage values but that they vary in shape with stage and
therefore vary along the estimated discharge time series.

We used five different ways to represent the discharge data
uncertainty in the time series used for the model calibration.
Apart from using the time series realizations and the empirical
pdf, we investigated the use of uniform and triangular distri-
butions as well as the case when no discharge data uncertainty
is considered (i.e. the typical model calibration approach here
used as a benchmark). The lower and upper bounds of the
uniform and triangular distributions were derived from the
0.05th and 99.95th percentiles of the empirical distribution to
represent ranges similar to typical fuzzy estimates (e.g.
Blazkova and Beven 2009). The optimal realization from the
MCMC rating-curve estimation (i.e. the maximum a posteriori
probability estimate) was used to derive the best-estimate dis-
charge for the triangular distribution and the no-data-
uncertainty case.

2.4. Data for hydrological modelling

The following meteorological data were available for each
catchment: time series of hourly precipitation sums, time
series of hourly mean temperature, long term means of daily
temperature, and seasonally varying daily estimates of poten-
tial evaporation. All of these meteorological variables were
computed as areal mean values for each catchment using the
Thiessen-polygon method. The precipitation time series were
checked for water balance consistency against the discharge
data, and the precipitation data were corrected accordingly to
close the water balance in the Hondrich catchment. For the

Table 1. Main characteristics of the catchments used in this study (from Weingartner and Aschwanden 1992).

River and station Catchment
area (km2)

Station elevation
(m a.s.l.)

Mean catchment
elevation (m a.s.l.)

Areal glacier
cover (%)

Regime type

Kander-Hondrich 491 650 1900 7.9 b-glacio-nival (dominated by ice and snow melt runoff
processes)

Broye-Payerne 392 441 710 0 pluvial inférieur (dominated by rainfall–runoff processes,
related to lower elevation bands)

Wigger-Zofingen 368 426 660 0 pluvial inférieur
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Zofingen station, we observed hydropeaking (from short-term
hydropower regulation), evident from numerous artificial
peaks in the low flow range. Periods affected by such hydro-
peaking were removed from the calibration and validation
data.

3. Methods

We organized the study method according to the three specific
objectives (Section 1). We addressed these research questions as
shown in the flow chart in Fig. 2. We used the five different
representations of discharge data uncertainty (Section 2.3) and
two objective functions (Section 3.2) to evaluate different ways to
incorporate discharge data uncertainty in the calibration of
a hydrological model (the HBV model as described in
Section 3.1). For this purpose, we developed a new objective
function that incorporates information about different distribu-
tions of discharge data uncertainty (i.e., three of the five uncer-
tainty representations). As the new objective function cannot be
used without discharge data uncertainty, we used a standard
multi-objective calibration for the other two uncertainty repre-
sentations where data uncertainty is not incorporated in the
objective function. Finally, we evaluated the simulated results
using a set of hydrological signatures and scaled model residuals

analysis, which also accounted for the uncertainty in the observed
discharge data (Section 3.3).

3.1. Model description

The HBV model (Bergström 1976, Lindström et al. 1997) is
a typical bucket-type, semi-distributed hydrological model.
Several routines are used to represent the catchment function-
ing, i.e. the transfer from precipitation to catchment discharge.
In the snow routine, a degree-day approach is used to simulate
snow accumulation and melt. Snow melt and rainfall enter the
soil routine where the groundwater recharge is computed
based on the antecedent soil water storage, actual evaporation
is estimated based on the relative soil storage filling, and
a simple water balance accounting routine is used to update
the soil water storage. Groundwater recharge enters the
groundwater routine, where two reservoirs are used to repre-
sent groundwater storage and its control on runoff, which is
computed by three linear outflows and parameters defining
thresholds. The simulated runoff is then modified using
a simple routing routine, which attenuates and delays dis-
charge peaks. To allow for variable snow dynamics within
a catchment, the catchment is subdivided into elevation
zones (typically bands of 100–200 m) for the computations

Stage-discharge
gauging data

40000 rating curve
realisations

Benchmark
(no uncertainty)

1000 individual rating
curve realisations

Uniform
distribution

Triangular
distribution

Empirical
distribution

Multi-objective
function

(100 calibrations)

Multi-objective
function

(1000 calibrations)

Two versions of a new objective
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discharge data uncertainty

(100 calibrations)

Objective 1:

Impact of using
discharge data uncertainty

in model calibration

Objective 2:

Amount of information about
the discharge data uncertainty

distribution needed for
reliable calibration

Objective 3:

Impact of allowing for
simulations outside discharge

data uncertainty bounds

D
is

ch
ar

ge
 d

at
a

un
ce

rt
ai

nt
y

es
tim

at
io

n

5 
re

pr
es

en
ta

tio
ns

of
 d

is
ch

ar
ge

 d
at

a
un

ce
rt

ai
nt

y

M
od

el
ca

lib
ra

tio
n

us
in

g 
2

ob
je

ct
iv

e
fu

nc
tio

ns

Ev
al

ua
tio

n 
us

in
g

hy
dr

ol
og

ic
al

si
gn

at
ur

es
&

 s
ca

le
d 

sc
or

es

Figure 2. Flow chart of the method used in the study for each objective.
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in the snow and soil routines. In addition, a glacier routine can
be activated for catchments where glaciers contribute signifi-
cantly to catchment hydrology (Seibert et al. 2018).

The HBV model (without glacier routine) has typically
10–15 model parameters, which are usually set through
calibration or regionalization. As in most other bucket-
type models, the parameters take effective values at the
catchment scale and lump together different processes.
Any direct measurements of the parameter values are,
thus, not possible.

The HBV model exists in many different versions, and we
used the version HBV-light (Seibert and Vis 2012) with 15
parameters for the catchments Wigger-Zofingen and Broye-
Payerne and with 6 additional parameters for the Kander-
Hondrich catchment, for which the model included the glacier
routine (Seibert et al. 2018). Each catchment was subdivided
into 100 m elevation zones.

While the HBV model is often applied using a daily time
step, we here used an hourly time step, as this preserves
more information about the hydrological behaviour around
flow peaks in fast-responding catchments such as those used
in this study (e.g. multiple flow peaks that would be aver-
aged out in daily data). For some analyses, we compared the
hourly model calibration results to daily-scale simulations to
assess impacts of a more detailed precipitation input, but
also a potentially greater impact of precipitation data errors
on an hourly compared to daily scale. The model was
calibrated using data for the period 2001–2008 and evalu-
ated using data for 2009–2010. The calibration of the model
was performed using a Genetic Algorithm and Powell opti-
mization (GAP) approach (Seibert 2000) using the two
objective functions and the five uncertainty representations
(Section 3.2 and Fig. 2).

3.2. Model calibration with different discharge data
uncertainty representations

The five different representations of discharge data uncertainty
that we used in model calibration differed in the amount of
information about the uncertainty characteristics that they
include: from no information (benchmark) to little informa-
tion (uniform and triangular distributions) to much informa-
tion (empirical frequency distribution and individual rating
curve realizations).

The three uncertainty representations, i.e. uniform, tri-
angular and empirical distributions, required that we devel-
oped a new objective function to include distributional
information about discharge uncertainty for each time
step directly into the model calibration (Section 3.2.3).
Note, however, that including the discharge data uncer-
tainty directly into the calibration procedure in the new
objective function makes this function dependent on the
availability of the discharge data uncertainty estimates.
Thus, this function cannot be used without any discharge
data uncertainty estimates and other (standard) objective
functions had to be used for the other two uncertainty
representations, i.e. the individual rating curve realizations
and the no uncertainty benchmark (Sections 3.2.1–3.2.2).

3.2.1. Independent realizations of discharge time series
from rating curve realizations
With this uncertainty representation, 1,000 independent rating
curve realizations were randomly sampled from the estimated
40,000 posterior parameter distributions (Section 2.3). For
each sampled rating curve, the corresponding discharge time
series was used to run a multi-objective model calibration,
resulting in 1,000 model simulation realizations in total (i.e.
one simulation for each model calibration). Note that informa-
tion about the autocorrelation of the discharge uncertainty and
the bias in low or high flows is implicitly accounted for when
using multiple individual realizations in this approach.
Similarly, parameter uncertainty was also implicitly considered
by calibration to the 1,000 individual discharge realizations.
For the model calibration we used a multi-objective function
that combined the Kling-Gupta efficiency (RKGE, Gupta et al.
2009), the efficiency for peak flows (Rpeak, Seibert 2003), and
the mean absolute relative error (i.e. the MARE efficiency,
RMARE, Dawson 2007). Both RKGE and Rpeak are sensitive to
peak flows and RMARE is sensitive to low flows. These metrics
were weighted following Sikorska et al. (2018) but using RMARE

instead of the Nash-Sutcliffe efficiency calculated using the
logarithm-transformed discharge values to avoid problems
with zero discharge values. The resulting objective func-
tion was:

Fobj ¼ 0:3 � RKGE þ 0:2 � RMARE þ 0:5 � Rpeak (2)

The RKGE value was computed as

RKGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � 1ð Þ2 þ α� 1ð Þ2 þ β� 1ð Þ2

q
(3)

where r is the correlation, α is a measure of the relative
variability in the simulated and observed values, and β is a bias.
RMARE and Rpeak were computed as:

RMARE ¼ 1� 1
n

X Qobs � Qsimj j
Qobs

(4)

Rpeak ¼ 1�
P

Qobs;peak � Qsim;peak
� �2P
Qobs;peak � Qobs;peak
� �2 (5)

where Qobs;peak is the average observed peak discharge, and
Qobs,peak and Qsim,peak are the peaks of the observed and simu-
lated discharges (Qsim,peak corresponds to the highest value
within a ±3 day window of each observed peak).

3.2.2. “No uncertainty” benchmark: optimization with the
best-estimate discharge
As a benchmark for comparing to the calibration using the 1000
rating curve realizations, we used the same multi-objective cali-
bration as in Section 3.2.1, but only with the best-estimate
discharge from the rating curve estimation, i.e. without consid-
ering the uncertainty in the discharge time series. This corre-
sponds to the standard calibration approach used in hydrology
when the model is calibrated only against the best-estimate
discharge time series and its uncertainty is neglected. We used
100 individual calibration trials to account for some parameter
uncertainty without being too demanding computationally con-
sidering the total number of calibrations in the study.

HYDROLOGICAL SCIENCES JOURNAL 2445



3.2.3. New objective function for discharge time series with
uncertainty distributions
Discharge uncertainty information on time series data have
been used before in model calibration, e.g. when using trian-
gular distributions in GLUE limit of acceptability approaches
and accepting simulations as behavioural if they are always
inside the limits, or inside for a certain fraction of time (Liu
et al. 2009). An alternative approach is to take an average of the
deviations relative to the observed distribution at individual
time steps. This time-step based method was previously used
by Krueger et al. (2010) who use a uniform observed distribu-
tion and average the performance over different hydrograph
aspects (non-driven quick and slow flow, and driven quick
flow), and by McMillan et al. (2010) who accounted for auto-
correlation by including the effective sample size in the calcu-
lation of the aggregated likelihood. Some weighting of the
performance at each time step is necessary as taking the
equally-weighted average of the deviations at individual time
steps would bias the simulations to low flows, which occur
more frequently in discharge time series. To reduce this bias,
we investigated using a flow-weighted average that gives rela-
tively higher weights to deviations at high flows, which occur
more seldom. The objective function was defined for all three
discharge data uncertainty distributions in the following way:

Fobj ¼
PT

t¼1 w tð Þ � Qobs tð Þð Þ2PT
t¼1 Qobs tð Þð Þ2 (6)

where t is the time step, T is the total number of time steps, w
(t) is a weight at time step t assigned depending on the position
of the simulated discharge value in relation to the observed
data uncertainty distribution, and Qobs(t) is an observed dis-
charge at time step t. The measure has a maximum value of one
(representing a perfect match to the mode of the uncertainty
distribution at each time step) and a minimum value of zero
(representing a model simulation that is consistently outside
the uncertainty distribution). The assigning of the weight w(t)
at each time step varies depending on the type of discharge
data uncertainty representation that is used and is explained
below for the three distributions we used (uniform, triangular,
empirical). Obviously, this objective function cannot be used
without discharge data uncertainty because the weights w(t)
cannot be computed if the uncertainty bounds for the dis-
charge time series are not given.

To address the third study objective (Section 1), we inves-
tigated a modification of the objective function in Equation (6)
that allows for simulations outside the defined discharge
uncertainty bounds by penalising the model more, the further
away from the bounds the model simulations are (see below).
This modification is similar to the approach of Krueger et al.
(2010) and was done as an attempt to allow for, e.g. model
input errors, which can cause even an acceptable model simu-
lation to be outside the uncertainty bounds. As for the bench-
mark simulations, we used 100 individual calibration trials to
account for parameter uncertainty.

3.2.3.1. Upper and lower bounds (uniform distribution).
This uncertainty representation uses the simplest type of uncer-
tainty information, where only lower and upper discharge

uncertainty bounds are available and are used with a uniform
distribution in-between the bounds. For each time step, each
simulation that is outside the bounds was assigned a weight w(t)
of zero, whereas a value of one was assignedwhen the simulation
was within the bounds:

w tð Þ ¼ 1 if QL tð Þ � Qsim tð Þ � QU tð Þ
0 otherwise

�
(7)

where Qsim(t) is the discharge simulated at the time step t, and
QL(t) and QU(t) are, respectively, the lower and the upper
bounds at time step t.

This approach could be used with most types of discharge
uncertainty estimation techniques, including fuzzy rating-
curve approaches (Section 1). We used the 0.05th and 99.95th

percentiles of the discharge data uncertainty distribution as the
lower and upper bounds of discharge uncertainty (see
Section 2.3).

With Equation (7), a weight of zero is assigned to all dis-
charge simulations lying outside the bounds regardless of the
distance from the upper/lower bound. The weights were
assigned independently at each time step. To allow for simula-
tions outside the bounds (that may result from, for instance,
precipitation data errors), we investigated a modification of the
above approach. For all simulations lying outside the bounds,
a linear extrapolation was performed based on the interval
between the best-estimate discharge and the upper/lower
bound. In this way, simulations outside the bounds receive
a negative weight, and the weights become more negative the
further the simulations are from the bounds.

w tð Þ ¼
Qsim tð Þ�QL tð Þ
QB tð Þ�QL tð Þ if Qsim tð Þ<QL tð Þ

1 if QL tð Þ � Qsim tð Þ � QU tð Þ
Qsim tð Þ�QU tð Þ
QB tð Þ�QU tð Þ if Qsim tð Þ>QU tð Þ

8><
>: (8)

where QB(t) is the best-estimate (i.e. optimal from the MCMC)
observed discharge value at time step t as estimated from the
rating curve (Section 2.3).

3.2.3.2. Triangular distribution. For this uncertainty repre-
sentation, the same upper and lower bounds as for the uniform
distribution were used together with the best-estimate discharge
estimate to define a triangular distribution. Triangular distribu-
tions have been commonly used in fuzzy discharge data uncer-
tainty estimation (e.g. Westerberg et al. 2011a). Here the best-
estimate discharge gets a weight of 1, whereas a weight of 0 is
assigned to all simulations lying outside the bounds. Linear
interpolation was applied to all values between the lower
bound, the optimum, and the upper bound:

w tð Þ ¼
Qsim tð Þ�QL tð Þ
QB tð Þ�QL tð Þ if QL tð Þ � Qsim tð Þ � QB tð Þ
Qsim tð Þ�QU tð Þ
QB tð Þ�QU tð Þ if QB tð Þ<Qsim tð Þ � QU tð Þ

0 otherwise

8><
>: (9)

As for the uniform distribution, an extrapolation outside the
bounds could also be performed to allow evaluation of simula-
tions that are outside the bounds with non-zero (i.e. negative)
values, and the weights are then assigned as:
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w tð Þ ¼
Qsim tð Þ�QL tð Þ
QB tð Þ�QL tð Þ if Qsim tð Þ � QB tð Þ
Qsim tð Þ�QU tð Þ
QB tð Þ�QU tð Þ if Qsim tð Þ >QB tð Þ

(
(10)

3.2.3.3. Empirical frequency distribution. The empirical pdf
of the discharge uncertainty distribution for each time step was
represented by 100 equally distributed points (Qi) in-between
the minimum and maximum discharge values and their cor-
responding frequency values (Wi). Values lying outside the
minimum and the maximum values were assigned a value of
zero. This uncertainty representation allows incorporating
information about uncertainty distributions that change
shape (skew, uni- or multimodality, heavy-tailed, etc.) across
the flow range (e.g. Le Coz et al. 2014). The weights are
assigned as:

w tð Þ ¼

W1 tð Þ if Q1 tð Þ � Qsim tð Þ<Q2 tð Þ
W2 tð Þ if Q2 tð Þ � Qsim tð Þ<Q3 tð Þ
� � �

W99 tð Þ
W100 tð Þ

0

� � �
if Q99 tð Þ � Qsim tð Þ<Q100 tð Þ

if Qsim tð Þ ¼ Q100 tð Þ
otherwise

8>>>>><
>>>>>:

(11)

As for both previous approaches, an extrapolation outside the
bounds is possible, and the weights are assigned in the follow-
ing way:

w tð Þ ¼

Qsim tð Þ�Q1 tð Þ
QB tð Þ�Q1 tð Þ if Qsim tð Þ<Q1 tð Þ
W1 tð Þ if Q1 tð Þ � Qsim tð Þ<Q2 tð Þ
W2 tð Þ if Q2 tð Þ � Qsim tð Þ<Q3 tð Þ
� � � � � �
W99 tð Þ if Q99 tð Þ � Qsim tð Þ<Q100 tð Þ
W100 tð Þ if Qsim tð Þ ¼ Q100 tð Þ

Qsim tð Þ�Q100 tð Þ
QB tð Þ�Q100 tð Þ if Qsim tð Þ >Q100 tð Þ

8>>>>>>>>><
>>>>>>>>>:

(12)

3.3. Evaluation of the different model calibration
methods

The reliability of the simulations from the different model
calibration strategies was evaluated for the calibration and
evaluation period using two main types of analysis that took
account of the observed discharge data uncertainty. First, we
investigated how well the model simulations reproduced
observed (uncertain) signature values, and secondly, how the

model residuals, when scaled to the observed uncertainty
intervals, behaved for different aspects of the hydrograph.

3.3.1. Reproduction of time series and signatures
We chose a set of 16 signatures that defined key aspects of
the catchment behaviour: flow distribution, event frequency
and duration, and flow dynamics (Table 2). These types of
signatures have been used in many previous studies of, e.g.
flow variability, model calibration and regionalization
(Jowett and Duncan 1990, Yadav et al. 2007, Euser et al.
2013, Vigiak et al. 2018). To reduce impacts of data uncer-
tainty related to the signature design (McMillan et al.
2017b), the event frequency and duration signatures were
defined using a flow percentile threshold instead of
a multiplier of median flow (Westerberg and McMillan
2015). The signature values were calculated for each of
the 1,000 observed discharge data time series estimated
from the 1,000 rating curve realizations and for each
model simulation. The distributions of the 1,000 observed
signature values were then compared with those from the
model simulations for each calibration (Fig. 2).

3.3.2. Analysis of scaled model residuals
We assessed the model residuals quantitatively by scaling the
residual values to the observed discharge uncertainty intervals
for each time step and by analysing their characteristics for
different parts of the hydrograph. Analysis of scaled residuals,
also called scaled scores (Liu et al. 2009, Westerberg et al.
2011b), allows the performance of individual model realiza-
tions to be analysed in relation to the observed discharge data
uncertainty. This enables an analysis not only of the position of
the simulated values within the observed uncertainty distribu-
tions (such as when using a rank histogram (McMillan et al.
2010) or a predictive quantile-quantile plot (Thyer et al. 2009),
but also their positive respective negative distance when the
simulations are outside the observed upper respective lower
bounds. Deviations outside the bounds are important to con-
sider in model evaluation since even a perfect model can
deviate from the observed data uncertainty distribution
because of other errors than model structure, such as errors
in the input data.

We followed the method of Westerberg and Birkel (2015)
for assigning and analysing the scores. This method uses the
best-estimate discharge and the upper and lower bounds

Table 2. Signatures used for evaluation of model performance (based on Westerberg et al. 2016). For evaluating the daily simulations, the signatures were calculated in
a corresponding way using daily data.

Signature type Name Description Unit

Flow distribution Flow percentiles (Q0.01, Q0.1, Q1, Q5,
Q10, Q20, Q50, Q80, Q90, Q99)

Low and high flow exceedance percentiles from the flow duration curve (FDC). mm h−1

Mean flow (QMEAN) Average flow in the analysis period mm h−1

Event characteristics High flow event frequency (QHF) Average number of hourly high-flow events per year, with a threshold equal to the
5th exceedance percentile

year−1

High flow event duration (QHD) Average duration of hourly flow events higher than a threshold equal to the 5th

exceedance percentile
h

Flow dynamics Base-flow index (QBFI) Contribution of base flow to total streamflow, calculated from daily flows using the
Flood Estimation Handbook method (Gustard et al. 1992)

-

Overall flow variability (QCV) Coefficient of variation in streamflow, i.e. standard deviation divided by mean flow
(e.g. Jowett and Duncan 1990)

-

Flow autocorrelation (QAC) Autocorrelation for 1 day (24 h). E.g. used by Winsemius et al. (2009) -
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(Section 2.3) to assign the scores: i.e. a value of 0 for the best
estimate, and –1 and 1 for the lower and upper bound respec-
tively (Fig. 3). Values lying inside these borders were linearly
interpolated, whereas those outside were extrapolated linearly.
For example, a simulated value that is two times the magnitude
of the upper bound will, therefore, get a score of +2, and
a value that is two times the lower bound will receive a score
of –2. These scores were then analysed for six different aspects
of the hydrograph: large and small peaks, base flows, rising and
falling limbs, and troughs. The hydrograph aspects were
defined for both hourly and daily time series following
Westerberg and Birkel (2015), with large peaks defined as
flows >0.8 mm/h (>12 mm/d), base flows for flows
<0.27 mm/h (<1.5 mm/d), and the time-window parameter
for the definition of the other aspects set to 3 hours (1 day).

4. Results

4.1. Rating curve and discharge uncertainty results

The estimated rating curve and discharge uncertainty dis-
tributions differed in-between the three stations (Fig. 4).
Zofingen had a wide uncertainty distribution at high flows
because of the scatter in the high-flow gauging data and the
extrapolation of the highest 1.5 m of the rating curve.
Hondrich had a more centred distribution but with
a wide 5–95% interval, likely as a result of scatter in the
gaugings in the mid flow range. At Payerne, the uppermost
2 m of the rating curve were constrained only by one
gauging, which led to a constrained but heavy-tailed dis-
tribution: the upper (99.95%) and lower (0.05%) bounds at
high flows had the widest interval of all stations. The half-
widths of the 5–95% uncertainty bounds for hourly low,
medium and high flow (i.e. Q90, Q20 and Q0.1) were ±30%,
±12% and ±8.6% respectively at Payerne, ±23%, ±10%, and
±20% at Hondrich, and ±22%, ±10%, and ±15% at

Zofingen. Note that at Zofingen the best-estimate realiza-
tion from the MCMC at extrapolated high flows was not in
the centre of the discharge distribution. This was likely
because of conflicting information in the middle to high
flow gaugings (i.e. scatter in the gauging data) in combina-
tion with the lack of gaugings at extremely high flows.

4.2. What is the impact of including/excluding discharge
data uncertainty in model calibration on the resulting
simulations?

To address this research question, we first investigated the
impact of considering uncertainties in model calibration by
comparing the 100 multi-objective calibrations using the best-
estimate data (i.e. the no uncertainty benchmark) to the 1,000
rating-curve realizations calibrated with the same method. We
then compared these results to the simulations with the new
objective function (see objective 1 in Fig. 2).

4.2.1. Use of the multi-objective function
The simulated hydrological signatures for these two calibra-
tions using the multi-objective function had similar uncer-
tainty distributions, but there was generally a wider
uncertainty for the rating-curve realizations (results not
shown). This is not surprising given that the rating-curve
realization simulations allow for the observed discharge data
uncertainty. The difference in the number of simulated reali-
zations between these two methods did not influence the
results: we checked that the resulting signature distributions
and the other results for the rating-curve realizations were the
same, but less smooth, when using 100 instead of all 1,000
rating-curve realizations.

We then analysed the model residuals scaled to the observed
discharge data uncertainty interval (i.e. the scaled scores,
Section 3.3.2) for different hydrograph aspects for simulations

Discharge at time t (mm/dt)

P
df

 o
f o

bs
er

ve
d 

di
sc

ha
rg

e 
at

 ti
m

e 
t (

−)

QL QOQsim QU

0.0

0.2

0.4

0.6

0.8

1.0

Discharge at time t (mm/dt)

S
ca

le
d 

sc
or

e 
(−

)

QL QOQsimQU

−2

−1

0

1

2

0 10 20 30 40 50

Time step (dt)

D
is

ch
ar

ge
 (m

m
/d

t)

2

4

6

8

10

0 10 20 30 40 50

Time step (dt)

S
ca

le
d 

sc
or

e 
(−

)

−2
−1

0
1
2
3
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performed at both hourly and daily time steps. This analysis
showed that at hourly time steps the scaled score distributions
for the benchmark simulations and the rating-curve realizations
were mostly similar for Hondrich, where the model performed
best (Fig. 5, top panel). The main difference occurred for large
peak flows, where calibration to the rating curve realizations
resulted in more underestimation (i.e., scaled scores <-1) com-
pared to the benchmark simulations. At Zofingen both simula-
tions had larger deviations for all time steps compared to at
Hondrich, and the scaled score distributions were less similar
between the two calibrations for rising limbs and troughs
(Fig. 5, bottom). At Payerne, the model had the worst perfor-
mance for all hydrograph aspects apart for from base flows, for
which the model performed best among all three catchments

(Figure S1 in supplementary material). For Payerne, the dis-
tributions were also similar when including or excluding dis-
charge uncertainty in the multi-objective calibration, but using
the rating-curve realizations led to slightly more underestima-
tion of peak flows, troughs, and rising limbs. For the evaluation
period, the results were generally similar to the calibration
period for all three catchments, but with more underestimation
at Payerne when using the rating curve realizations. For the
daily scale simulations in both calibration and evaluation per-
iods, there was more underestimation at Hondrich for all flow
aspects and for base flows at Zofingen, while at Payerne no
apparent differences could be identified. In summary, the
results showed that using multiple realizations of the time series
to represent discharge data uncertainty did not give better
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results than the no-uncertainty benchmark when using the
multi-objective function. In the next section we therefore inves-
tigate whether including information about the discharge data
uncertainty directly in the objective function is a better
approach.

4.2.2. Use of the new objective function
We compared the simulated results from the multi-objective
calibrations (with and without observed uncertainty) to the
simulations using the new objective function (i.e. those based
on Equation (6)) that integrates information about the observed
discharge uncertainty distribution. This new objective function
requires a quantification of discharge data uncertainty, where-
fore we compare these results to the multi-objective calibra-
tions. The two multi-objective calibrations had worse results

than the representations using the new objective function for all
flow aspects apart from base flows at Hondrich (Fig. 5, top
panel). While only results for the empirical frequency distribu-
tion are shown for clarity, the differences to the multi-objective
calibrations were similar for the other methods. At Zofingen the
results were more mixed, with more underestimation of small
peaks and falling limbs and less overestimation of troughs for
the multi-objective calibrations, but better results for base flows
and no clear differences for rising limbs and large peaks (Fig. 5,
bottom panel). At Payerne, there was more underestimation of
large peaks for the multi-objective calibrations, similar base
flow performance and equally poor results for the other flow
aspects for all calibrations. The results were in general similar
for the evaluation period in all catchments with more under-
estimation for the multi-objective calibrations for most flow
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aspects, but with slightly better results for base flows. Overall,
the objective functions that integrate information about the
observed discharge data uncertainty distribution led to better
simulation results than both approaches using the multi-
objective function, i.e., the approach with the rating curve
realizations and the no-uncertainty benchmark approach.
Including discharge data uncertainty in the model calibration
therefore gave better results than not including discharge data
uncertainty, but only when the information about the discharge
data uncertainty was included directly into the (new) objective
function.

4.3. How much information about the discharge data
uncertainty distribution is needed in the objective
function to obtain reliable model simulations?

We compared model calibration using the three uncertainty
representations with different observed discharge distributions
in the objective function, i.e. using uniform, triangular, or
empirical frequency distributions (see Fig. 2, objective 2). We
found that there was a small difference for low to medium
flows and for average flows between the different simulations
in all catchments (Q90–Q20 and QMEAN, Fig. 6). The simulated
results showed the same differences for the calibration and
evaluation periods. For intermediate and high flows, the dif-
ferences between the simulated uncertainty distributions were
larger, but they were still overlapping (Q5–Q0.01). For the QBFI,
QCV, QAC, QHD, and QHF signatures (Table 2), the uncertainty
distributions overlapped to a large extent for all the three
calibration methods. An analysis of the scaled residuals
showed that the simulated distributions were less centred on
zero within the observed uncertainty bounds when using the
uniform distribution compared to the triangular or empirical
frequency distributions. This occurs because the uniform dis-
tribution gives equal weights within the uncertainty bounds.
This finding suggests that the uniform distribution may be less
useful when there is some confidence in the observed discharge
uncertainty distributions or best-estimate values. In summary,
the differences between the three types of calibrations that
incorporate the observed discharge distributions in the objec-
tive function were small. However, using the empirical or
triangular pdf was preferable to the uniform distribution, and
therefore having information about at least the discharge data
uncertainty bounds and the best-estimate discharge is prefer-
able for model calibration.

4.4. What is the impact of allowing for simulations
outside the discharge data uncertainty bounds?

With the first type of objective function (Equations (7), (9) and
(11)), the simulated discharge had a zero weight at all time steps
during which the simulated discharge was outside the observed
uncertainty bounds. However, model simulations could be out-
side the observed uncertainty bounds because of an input data
error such as precipitation data that is wrongly measured or not
representative of the whole catchment. To account for such
errors, we tested the modified objective functions (Equations
(8), (10) and (12)) that, instead of assigning a zero weight,
assign increasingly negative weights the further the simulated

discharge is from the observed uncertainty bounds (i.e. extra-
polating outside the uncertainty bounds).

We found that for all three catchments, allowing for simu-
lations outside the bounds by assigning non-zero weights
resulted in less variability among the 100 simulated realiza-
tions (Fig. 7). The largest impact on the simulated results was
observed for Payerne. Here the rising limbs, falling limbs, and
troughs were much better represented with this modified ver-
sion of the objective function, but at the same time the model
consistently underestimated the peak flows. At Payerne, there
was only one high flow gauging available (Fig. 4) to constrain
the upper two meters of the rating curve, and the high flows are
therefore much more uncertain than intermediate or low
flows. However, the observed discharge uncertainty bounds
were very wide at high flows, which means that it is improbable
that the true discharge would not be within these bounds. The
poor model performance at high flows, with considerable
underestimation of peak flows even when allowing for simula-
tions outside the bounds (Figs. 7 and 8), suggests that either
the model structure is not well adapted to reproduce the fast
precipitation–runoff response in this catchment, or there may
be some inconsistencies in the observed data (Beven and
Westerberg 2011). The ambiguous delineation of the Payerne
catchment from the Digital Elevation Model points at possible
groundwater flows towards Lake Geneva (that are, thus, not
recorded at the gauge in Payerne), and a drinking water diver-
sion may also contribute to data inconsistencies and conse-
quently poor model reproduction of flow peak behaviour
(Parriaux 1981, Bultot et al. 1994).

At Zofingen, the model simulations were in general lower
when accounting for simulations outside the bounds. In parti-
cular, the high flows were more underestimated but still within
or close to the uncertainty bounds. This also occurred at
Hondrich, where the average deviations were more centred
within the bounds for the simulations without extrapolation
outside the bounds. In summary, allowing for deviations out-
side the uncertainty bounds led to smaller variability between
the 100 simulated realizations but also to consistent under-
estimation of peak flows. This modified objective function
therefore appears to be a less useful strategy than the original
approach with assigning zero weights to all simulated values
lying outside the uncertainty bounds. However, note that the
way of assigning the weights, particularly to high flows, may
also play a role here, and this is further discussed in Section 5.1.

5. Discussion

5.1. Model calibration with uncertain discharge data

Incorporating information about the discharge uncertainty
distribution at each time step directly into the objective func-
tion gave overall the best simulation results in our study. In
contrast, using multiple rating curve realizations and calibrat-
ing the model once to each corresponding time series gave
poorer results with underestimated high flows. In addition,
this approach did not lead to better results than the benchmark
(no data uncertainty) calibration and was much more compu-
tationally demanding (a factor of 10 compared to the calibra-
tions with the new objective function and the uniform,
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triangular and empirical distributions, which were roughly the
same). The number of discharge time series realizations could
be reduced from 1,000 to lower the computational demand,
but it would mean that some information about the discharge
time series uncertainty would be lost. It is worth mentioning
that the no data uncertainty approach (benchmark) in fact
accounts for some parametric uncertainty of the hydrological
model and by this it may partly compensate for the discharge
data uncertainty that is not explicitly considered in this repre-
sentation. Similarly, the representation using the multiple
(1,000) realizations of the rating curve and doing 1,000
model calibrations implicitly accounts for parameter uncer-
tainty of the hydrological model. Such effects can be more
comprehensively studied using more advanced Bayesian like-
lihood approaches (see Section 5.2).

When using the new objective function that incorporates the
observed uncertainty distribution, the information about the
discharge uncertainty is considered directly in the evaluation

between the simulated and observed values at each time step. In
contrast, when using multiple realizations, the discharge uncer-
tainty is considered indirectly in the calibration, but on the other
hand, the information about the autocorrelation of the discharge
errors is preserved (as the entire realization is used). The latter
could be an advantage in some applications targeting, e.g., flow
recession behaviour, but would not work with the VPM rating
curve estimationmethodwe used here if there aremajor shifts in
the stage–discharge relationship at the discharge gauging site.
This is because the rating curve uncertainty needs to be esti-
mated separately before and after the shift and there is no link
between the individual rating curve realizations for the two
periods. In such cases, rating-curve uncertainty estimation
methods that model the temporal evolution of the stage–dis-
charge relationship and the uncertainty explicitly can be used
instead (see methods overview in Kiang et al. 2018).
Alternatively, the rating curve uncertainty can be estimated
separately before and after the rating shift. In both these cases
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the new objective function that incorporates the discharge
uncertainty distribution at each time step can be used.

The differences in results between using the uniform, trian-
gular and empirical distributions were generally small, sug-
gesting that any of these three approaches could be used.
However, when evaluating the scaled model residuals, we
could see that the simulations were more widely spread and
less centred on the best-estimate discharge value when using
the uniform distributions. This finding makes the uniform
distribution less suitable than triangular and empirical distri-
butions when, as in many situations, there is confidence about
the best-estimate discharge or discharge distribution. Then
empirical or triangular discharge distributions are recom-
mended instead of a uniform distribution. If an empirical
discharge distribution is available, it is advisable to use it
instead of a triangular distribution as the former incorporates
more information about the discharge uncertainty and there-
fore leads to a more appropriate weighting (particularly when
the distribution is heavy-tailed or changes shape across the
flow range).

The modification of the new objective function, which gave
increasingly lower weights the further the simulations are from
the distribution bounds (instead of assigning a zero weight), was
a simple approach to allow for the effect of, e.g. input errors that
can cause even a perfect model to be outside the uncertainty
bounds. However, this modified objective function resulted in

a consistent underestimation of peak flows and is therefore not
recommended in its current form. This underestimation may
have resulted from the squared flow weighting in the objective
function, whichmay still be giving too little weight to the highest
flows. This approach may therefore work better with a revised
flow-weighting method, which could be tested in future studies,
together with comparing to the approach of Krueger et al. (2010)
of averaging the deviations for different flow aspects.

5.2. Method considerations and limitations

Amajor limitation of our study is that it was not possible to use
the same objective function for all the five uncertainty repre-
sentations, as the new objective function cannot be used with-
out any information on discharge data uncertainty (i.e. the
weights cannot be assigned). This means that when comparing
the simulation results for the new objective function with those
of the multi-objective calibrations, part of the difference in the
results is due to the use of different objective functions and not
to the inclusion or not of the discharge data uncertainty.

The new objective function, which we propose in this paper,
can incorporate different distributions of discharge data uncer-
tainty directly into the calibration of a hydrological model with
discharge time series. Compared to full-scale Monte Carlo
analyses using informal or formal Bayesian likelihood
approaches to account for discharge data uncertainty (e.g.

Figure 7. Comparison of model calibration without (left) and with (right) accounting for deviations outside the uncertainty distribution bounds for the three
catchments using the objective function that incorporates information about the observed discharge uncertainty distribution (Freq: empirical frequency distribution,
Triang: triangular distribution, and Unif: uniform distribution). The graphs show the average scaled scores (residuals scaled to the observed uncertainty interval) for the
six flow types for each of the 100 realizations (grey lines) and the average for all realizations (thick black line).
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Krueger et al. 2010, Sikorska and Renard 2017), our approach
in this study provides a less in-depth analysis of total uncer-
tainty as it does not consider input or model structural errors
and only partly parametric uncertainty. On the other hand, it
provides a simpler and faster (much less computationally
demanding) way to account for discharge data uncertainty in
model calibration, as the objective function can be directly
used with traditional optimization techniques without the
need to sample the full parameter space, as in Bayesian
approaches. This approach is primarily suitable for applica-
tions where it is not feasible to run a full-scale uncertainty
analysis (e.g., due to computational issues).

When using limits of acceptability in GLUE applied directly
to the time series as in Liu et al. (2009), this typically requires
defining a threshold of acceptable time steps, for which the
model simulation can be allowed outside the observed data
distribution (i.e., the limits of acceptability), as simulations are
generally not inside the limits at all time steps. However, this
can lead to some systematic errors, as the time steps for which
the simulations are outside the limits may be the

hydrologically most interesting time steps (e.g., droughts or
floods). In comparison, averaging the deviations for all time
steps in a hydrologically meaningful way (Krueger et al. 2010,
McMillan et al. 2010) can give a balanced simulation. We used
a flow-weighted average of the deviations relative to the
observed discharge data uncertainty interval to give deviations
of different flow magnitudes a similar weight regardless of
their occurrence. We found that this flow-weighting compo-
nent played a large role for the calibration results. When
developing the method, we tested a different flow-weighting
that gave less weight to high flows, and this resulted in simula-
tions that only had good performance for low flows. Using an
inappropriate flow weighting could thus directly impact on
what we learn about the hydrology of a modelled catchment.
It is therefore important to check that the weighting is appro-
priate for a particular application, using approaches such as
scaled model residuals to evaluate simulation performance for
different flow conditions. The weighting function will be partly
dependent on the flow regime (relative contribution of base-
flows, length of peak flows, etc). We therefore recommend that

Figure 8. Precipitation time series (top), observed discharge (uncertainty bounds and distribution and averaged simulated discharge (middle), and average scaled
scores (residuals scaled to the observed discharge uncertainty interval (bottom) for October–November 2002 in the calibration period in the Payerne catchment. The
simulated discharge and corresponding scaled scores are shown for calibrations with and without accounting for extrapolation outside the uncertainty bounds, using
the Freq (empirical frequency distribution), Triang (triangular distribution) and Unif (uniform distribution) to represent observed uncertainty in the objective function.
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different flow-weighting options are evaluated in future studies
to investigate if there are better approaches than the squared
weighting we used.

An alternative approach to the one we took here would be
to translate the discharge data uncertainty to uncertainty in
hydrological signatures (Westerberg and McMillan 2015), and
then use these signatures for model calibration instead of
discharge time series (Blazkova and Beven 2009, Schaefli
2016). Such an approach may be more robust to input errors
at individual time steps (Westerberg et al. 2011b). Further
comparisons between such signature-based approaches to
account for discharge data uncertainty and time-series based
approaches like those used here should be made. Such com-
parisons should investigate which approaches are most robust
when considering input errors and other errors that affect
hydrological model calibration apart from the discharge data
uncertainty explored in this study.

6. Conclusions and recommendations

We investigated the role of discharge data uncertainty in
hydrological model calibration and evaluation. Based on our
findings from the three Swiss catchments, we conclude with
the following recommendations for including discharge data
uncertainty in model calibration (noting that the choice of the
method will also be dependent on the resources, purpose and
data availability in any study):

(1) Including information about the discharge data uncer-
tainty distribution directly in the objective function
resulted in better discharge simulations than using
multiple realizations of discharge time series and opti-
mizing the model to each realization.

(2) When sufficient discharge data uncertainty information
is available, using triangular or empirical distributions
is better than using uniform distributions, as it leads to
a more appropriate weighting in the objective function,
and using empirical distributions is in turn better than
triangular distributions.

(3) Evaluating model simulations while taking the observed
data uncertainty into account is important to interpret
model results correctly when discharge data uncertainty
is high. We recommend an approach using both hydro-
logical signatures and scaled model deviations, which
complement each other by assessing model performance
for both overall flow statistics and at individual time
steps.
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