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Abstract Even in regions considered as densely monitored, most catchments are actually ungauged.
Prediction of discharge in ungauged catchments commonly relies on parameter regionalization. While
ungauged catchments lack continuous discharge time series, a limited number of observations could still be
collected within short field campaigns. Here we analyze the value of such observations for improving
parameter regionalization in otherwise ungauged catchments. More specifically, we propose an ensemble
modeling approach, where discharge predictions from regionalization with multiple donor catchments are
weighted based on the fit between predicted and observed discharge on the dates of the available
observations. It was assumed that a total of 3 to 24 observations from a single hydrological year were
available as an additional source of information for regionalization. This informed regionalization approach
was tested with discharge observations from 10 different hydrological years in a leave‐one‐out cross
validation scheme on 579 catchments in the United States using the HBV runoff model. Discharge
observations helped to improve the regionalization in up to 94% of the study catchments in 8 out of 10
discharge sampling years. Sampling years characterized by exceptionally high peak discharge, or high
annual or winter precipitation were less informative for regionalization. In the least informative years,
model efficiency increased with an increasing number of observations. In contrast, in the most informative
sampling year, 3 discharge observations provided as much information for regionalization as 24 discharge
observations. Overall, discharge observations were most effective in informing regionalization in arid
catchments, snow‐dominated catchments, and winter‐precipitation‐dominated catchments.

1. Introduction

Continuous discharge time series are fundamental for many water management decisions in a river basin.
However, even in regions considered as densely monitored, a considerable fraction of catchments are
ungauged or poorly gauged, that is, have no or only limited discharge data. Estimates of continuous
discharge time series in such catchments are often based on runoff models, which contain of a number of
tuneable parameters that are typically derived from calibration against observed discharge. Determining
these model parameters for data scarce catchments is one of the major challenges in hydrology
(Hrachowitz et al., 2013).

In the absence of discharge data, model parameters can be estimated using regionalization methods,
whereby hydrologic information is transferred from gauged to ungauged locations (Blöschl & Sivapalan,
1995). Regionalization is a long‐standing research question in hydrology and has received special attention
due to the PUB (Prediction in Ungauged Basins) initiative (Sivapalan et al., 2003). There are a great number
of regionalization approaches that have been proposed (for reviews see, e.g., He et al., 2011; Parajka et al.,
2013; Razavi & Coulibaly, 2013). Although the most suitable regionalization approach is likely site specific
(He et al., 2011; Razavi & Coulibaly, 2013), it has been argued that approaches that transfer parameters as a
set rather than individually are favorable since they account for parameter dependence (Bárdossy, 2007;
Buytaert & Beven, 2009; Kokkonen et al., 2003; McIntyre et al., 2005). Moreover, regionalization perfor-
mance is higher when averaging discharge simulations from parameter sets of multiple donor catchments
as opposed to the selection of one single donor (Arsenault & Brissette, 2014; Oudin et al., 2008; Yang
et al., 2018; Zhang & Chiew, 2009). Similarly, the combination of multiple regionalization methods can out-
perform predictions based on a single approach (Oudin et al., 2008; Viviroli et al., 2009; Yang et al., 2018;
Zhang & Chiew, 2009).
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Spatial proximity and attribute similarity are among the most commonly applied regionalization approaches
that use entire parameter sets from one or multiple donor catchment(s). Spatial proximity is based on
Tobler's first law of Geography that “everything is related to everything else, but near things are more related
than distant things” (Tobler, 1970, p. 236). In the context of hydrological modeling it can be assumed that
climate and catchment attributes vary smoothly in space (Parajka et al., 2013). Therefore, the distance
between catchment outlets (Parajka et al., 2013), centroids (Arsenault & Brissette, 2014; Oudin et al.,
2008; Samuel et al., 2011) or a combination thereof (Lebecherel et al., 2016) can be used to select hydrologi-
cally similar donor catchments. The efficiency of the spatial proximity approach obviously depends on the
density of the streamflow gauging network (Lebecherel et al., 2016; Samuel et al., 2011). Attribute
similarity‐based regionalization approaches presume that the degree of similarity between catchments can
be expressed by a multitude of catchment attributes that are linked to a catchment's runoff response
(Burn & Boorman, 1993). Commonly used attributes quantify topographical characteristics, land cover, cli-
matic conditions, or soil characteristics and geology (Arsenault & Brissette, 2014; Merz & Blöschl, 2004;
Oudin et al., 2008; Viviroli et al., 2009; Zhang & Chiew, 2009).

In some cases a catchment of interest lacks long continuous discharge time series, but a small number of dis-
charge observations could be collected within a limited time period. Several studies (Melsen et al., 2014;
Seibert & Beven, 2009; Seibert & McDonnell, 2015; Singh & Bárdossy, 2012) have shown the value of a
limited number of discharge observations for model calibration. Observations during wet periods (Melsen
et al., 2014; Vrugt et al., 2006; Yapo et al., 1996) or at an event peak and the subsequent recession limb
(Pool et al., 2017; Seibert & Beven, 2009; Seibert & McDonnell, 2015) are particularly informative for para-
meter estimation. Furthermore, a limited number of observations was shown to be most informative if it
represents the dominant hydrological processes and covers a range of hydrological conditions (Harlin,
1991; Singh & Bárdossy, 2012; Vrugt et al., 2006).

A few available discharge observations could also be used in combination with parameter regionalization.
For example, Viviroli and Seibert (2015) weighted parameter sets from each donor catchment based on their
ability to reproduce discharge observations taken during average flow conditions. They tested the proposed
approach on 49 catchments in Switzerland and report that a few observations can improve discharge predic-
tions, especially for snow and glacier dominated catchments. In a comparable parameter weighting
approach, Rojas‐Serna et al. (2016) analyzed the value of a varying number of randomly selected discharge
observations for regionalization. Results were based on 609 catchments in France and indicate that 5 dis-
charge observations can already be informative for regionalization and that 10 observations increased model
efficiency by up to 50%.

In this study, we assumed that a limited number of discharge observations were available for an ungauged
catchment. These observations were then used to inform parameter estimation together with regionalization
based on spatial proximity or attribute similarity. The proposed approach was tested with the HBV runoff
model (Bergström, 1976; Lindström et al., 1997) and the CAMELS data set (Addor et al., 2017; Newman
et al., 2015) using a leave‐one‐out cross validation, that is, treating each catchment ungauged in turns.
Our specific research questions were as follows:

1. Can a limited number of discharge observations be used to improve regionalization?
2. Does the value of a limited number of discharge observations vary between different types of catchments?
3. How much does the value of discharge observations vary between different sampling years?
4. How much does the value of discharge observations change with the number of observations?

2. Study Area and Data

This study was based on 579 catchments from across the contiguous United States (Figure 1). The catch-
ments cover a large range of hydroclimatic and landscape characteristics (Table 1). The study catchments
are a subset (see section 3.2) of the publicly available CAMELS data set (version 1.0; Addor et al., 2017;
Newman et al., 2015). CAMELS consists of over 600 catchments in the Unites States with minimum human
disturbance. The data set provides 20‐year‐long time series with daily discharge and meteorological data for
each catchment. Moreover, it includes catchment boundaries along with a list of 80 catchment descriptors,
such as location and topography attributes, climate indices, soil characteristics, and vegetation characteris-
tics. As an additional catchment characteristic, we extracted the percentage of catchment area classified as
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wetlands from the global data set of Lehner and Döll (2004). Using the meteorological data provided by
CAMELS, we furthermore calculated the monthly potential evaporation based on the Priestley‐Taylor
equation (Priestley & Taylor, 1972).

3. Model Structure and Model Calibration
3.1. HBV Model

Continuous daily discharge time series were simulated with the HBV model (Bergström, 1976; Lindström
et al., 1997) in the version HBV‐light (Seibert & Vis, 2012). HBV is a bucket‐type runoff model that consists
of four routines with a conceptual representation of snow pack dynamics, soil moisture variation, runoff
response, and discharge routing. The model is forced by daily temperature and precipitation data as well
as monthly potential evaporation data. In the snow routine, precipitation is assumed to fall as snow and

accumulates as soon as temperatures drop below a threshold value.
Snowmelt and refreezing of liquid snow water content are both estimated
based on the degree‐day method. Snowmelt, rainfall, and potential eva-
poration are inputs to the soil routine, where actual evaporation and
recharge to the groundwater are determined as a function of the simulated
soil moisture storage. The groundwater routine consists of a shallow and a
deep storage that contributes to the peak, intermediate, and baseflow
components of the hydrograph. Finally, the three discharge components
are summed and transformed into the hydrograph at the catchment outlet
by a triangular weighting function.

In this study, HBV was used in a semidistributed form by disaggregating
each catchment into elevation bands of 200 m using SRTM elevation data
(Jarvis et al., 2008). Hydrological processes in the snow and the soil rou-
tine were calculated separately for each elevation band, whereas ground-
water was represented as a single storage over the entire catchment. The
area‐weighted mean precipitation and temperature input from the
CAMELS data set were interpolated across elevation bands using a

Figure 1. Locations of the 579 study catchments. Colors indicate the aridity index and the marker shape denotes the
percentage of precipitation falling as snow.

Table 1
Statistics of Catchment Attributes Used in This Study

Catchment attribute
5th

quantile Median
95th

quantile

Area (km2) 22 301 2432
Aridity indexa (−) 0.33 0.83 1.94
Precipitation seasonalityb (−) −1.13 0.06 0.65
Precipitation falling as snow (%) 0 9 69
Forested area (%) 2 86 100
Wetland areac (%) 0 0 96
Clay content in soils (%) 6 19 36

aAridity index equals the ratio of sum of potential evaporation and sum of
precipitation. bPrecipitation seasonality is negative for catchments with
winter precipitation, zero for catchments without precipitation seasonal-
ity, and positive for catchments with summer precipitation (for the calcu-
lation see Addor et al., 2017). cPercentage of catchment area classified
as wetland was extracted from the global data set of Lehner and Döll
(2004).
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constant lapse rate of 10% per 100 m and 0.6 °C per 100 m, respectively. Potential evaporation was assumed
to be constant within each catchment.

3.2. Model Calibration

The HBV model was calibrated for each study catchment using meteorological input and continuous daily
discharge time series from 1 October 1989 to 30 September 1999. A warm‐up period of 2 ¾ years preceded
the calibration period to ensure suitable initial values for the state variables. Model parameters were opti-
mized within predefined parameter ranges using a genetic algorithm (Seibert, 2000) and a modified variant
of the Kling‐Gupta efficiency (Gupta et al., 2009) toward a nonparametric metric as objective function (RNP;
Pool et al., 2018). Similar to the King‐Gupta efficiency, RNP (equation (1)) consists of the three error terms
representing discharge volume (β; equation (2)), variability (αNP; equation (3)), and dynamics (rS; equa-
tion (4)). In the equations, β is the bias between observed (obs) and simulated (sim) mean discharge μ,
αNP is the absolute error between the observed and simulated normalized flow duration curve (where I[k]
and J[k] are the time steps when the kth largest flow [Q] occurs within the simulated and observed time ser-
ies, respectively), and rS corresponds to the Spearman rank correlation between the ranks of the observed
(Robs) and simulated (Rsim) discharge time series at time step t.

RNP ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−1ð Þ2 þ αNP−1ð Þ2 þ rs−1ð Þ2

q
(1)

β ¼ μsim
μobs

(2)

αNP ¼ 1−
1
2
∑n

k¼1
Qsim I kð Þð Þ
nQsim

−
Qobs J kð Þð Þ
nQobs

����
���� (3)

rs ¼
∑n

i¼1 Robs tð Þ−Robs
� �

Rsim tð Þ−Rsim
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Robs tð Þ−Robs
� �2� �

∑n
i¼1 Rsim tð Þ−Rsim

� �2� �r (4)

To account for parameter uncertainty and equifinality (Beven & Freer, 2001), we calibrated the HBVmodel a
100 times, resulting in 100 optimized parameter sets for each catchment. Catchments for which the model
failed to reproduce discharge at an acceptable level were discarded from the further regionalization as
suggested by Arsenault and Brissette (2014) and Bárdossy (2007). For the level of acceptance, we applied a
threshold of RNP > 0.65, which is comparable to a Nash‐Sutcliffe model efficiency RNS (Nash & Sutcliffe,
1970) larger than about 0.2. This selection resulted in the final set of 579 study catchments from the
originally more than 600 catchments of the CAMELS data set.

4. Modeling Framework
4.1. Regionalization Methods

In this study, regionalization was based on five donor catchments. These donors were selected by defining
homogeneous regions for every single catchment, which is known as the region of influence approach
(Burn, 1990). Homogeneous regions consist of similar catchments and were defined as (i) regions containing
spatially close catchments or (ii) regions with catchments having similar attributes. Spatial proximity was
defined as the Euclidian distance (Burn, 1990; McIntyre et al., 2005) between the coordinates of catchment
centroids, whereas attribute similarity was described using the Euclidian distance in the attribute space
(Burn, 1990; McIntyre et al., 2005). The attribute space consisted of seven selected catchment characteristics:
catchment area (log‐transformed values of area were used), aridity, precipitation seasonality as an indicator
for seasonal or perennial precipitation, percentage of precipitation falling as snow, percentage of forested
area, percentage of wetland area, and percentage of clay content in soils (Table 1). The seven attributes were
selected based on the results of a hierarchical cluster analysis run with all catchment attributes available in
the CAMELS data set (see section 2). The final selection of attributes is consistent with the range of attributes
used in many other regionalization studies (for a summary of commonly used attributes see, e.g., Razavi &
Coulibaly, 2013). All attributes were standardized using equation (5) (Milligan & Cooper, 1988), where Z is
the standardized attribute and X is the original attribute value.
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Z ¼ X−Xmin

Xmax−Xmin
(5)

Regionalization was evaluated using a leave‐one‐out cross validation, where each catchment was treated as
ungauged at a time and its discharge was estimated with the information from the donor catchments. Each
of the five donors provided its 100 parameter sets from calibration to the ungauged catchment. The total of
500 parameter sets was used to predict discharge in the ungauged catchment during the calibration and the
validation period (1 October 1999 to 30 September 2009), leading to 500 hydrographs for the ungauged
catchment. The 500 discharge simulations (Qi) were then aggregated into an ensemble mean hydrograph
(Q, equation (6)). Discharge at each time step t was derived from equally weighting (Wi ¼ 1

N) each (i) of
the total of N parameter sets.

Q tð Þ ¼ ∑N
i¼1Qi tð ÞWi (6)

The ensemble mean hydrograph was evaluated in terms of RNP. The described regionalization approach
based on attribute similarity or spatial proximity without any further information will be referred to as
classical regionalization in this study.

4.2. Gauging the Ungauged Catchment

To evaluate the value of individual discharge observations, we assumed that a hydrologist gets the opportu-
nity to take a few discharge measurements within one hydrological year in the previously ungauged catch-
ment. Such a sampling campaign was mimicked by extracting the few daily discharge observations from the
observed time series of each catchment. The selection of observations was restricted to a hydrological year
but repeated for each of the 10 calibration years (later on referred to as sampling years). A varying number
n of observations were strategically selected based on our experience from previous studies (Pool et al., 2017;
Seibert &McDonnell, 2015). The sampling strategy used to select discharge observations included samples of
the annual peak discharge, the subsequent days in the recession of the peak, and observations at a fixed day
in different months of the year. Depending on the number (n) of measurements, the observations were
assumed to have been taken as follows (Figure 2):

1. n = 3: 1 peak and 2 days in its recession
2. n = 6: 1 peak and 2 days in its recession combined with observations at the 15th of 3 months
3. n = 12: 1 peak and 5 days in its recession combined with observations at the 15th of 6 months
4. n = 24: 2 peaks and 5 days in their recessions combined with observations at the 15th of each month

The strategically taken discharge observations of the “ungauged” catchment served to evaluate the 500
hydrograph predictions from regionalization. The root‐mean‐square error (RRMSE) between predicted and
observed discharge on the dates of the n observations was used to compute a weighted ensemble mean
hydrograph (equation (6)) in the validation time period. The weightWi of each ith parameter set was calcu-
lated using equation (7), where N is the total number of j parameter sets (j = 1,2, …, N) and RRMSE,max is the
highest RRMSE among all parameter sets. Log‐transformed values of RRMSE were used to accentuate the
difference between the best and the worst parameter set.

Wi ¼ lnRRMSE;max− lnRRMSE;i

∑N
j¼1 lnRRMSE;max− lnRRMSE;j

(7)

The above described approach uses the information of a few discharge observations and will, therefore, be
referred to as informed regionalization. As for the classical regionalization, the ensemble mean hydrograph
of the informed regionalization was evaluated based on RNP. To assess the value of discharge observations
for regionalization, we calculated the difference in efficiency (ΔRNP) between the informed regionalization
(IR) and the classical regionalization (CR) as follows:

ΔRNP ¼ RNP IR−RNP CR (8)

4.3. Benchmarks

An upper and a lower benchmark (Seibert et al., 2018) were used as references for the model performance of
the classical regionalization and the informed regionalization. The upper benchmark was equivalent to the
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calibration of the model on the continuous 10‐year time series. It provides information on how well the
model simulates discharge in a particular catchment in a well‐informed situation. The lower benchmark
indicates the model's ability for simulating discharge in the absence of any discharge information.
Simulations for the lower benchmark were run with 10,000 randomly selected parameter sets. The 10,000
parameter sets of the lower benchmark and the 100 parameter sets of the upper benchmark were used to
simulate discharge in the validation period. Simulations were again combined into an ensemble mean
hydrograph (equation (6) with equal weights for all parameter sets) and evaluated using RNP.
Additionally, the ensemble mean hydrograph of the upper benchmark served to compute the percentage
increase in RNP (ΔRNP divided by the difference between RNP of the upper benchmark and RNP of the
classical regionalization) to have an indication for how close the efficiency of the informed regionalization
is to a well‐informed model calibration.

4.4. Variability of Model Performance in Space and Time

To investigate regional differences of the value of discharge data, we generated maps of efficiency differences
(ΔRNP) and evaluated these differences against catchment attributes. The relation between efficiency differ-
ences and catchment attributes is presented for the informed regionalization with 24 discharge observations
and a median sampling year.

The variability of model performance in time was evaluated in two ways. First, we analyzed the information
content of the 10 sampling years. To this end, sampling years were ranked by the efficiency of the informed
regionalization. The ranks were used to evaluate in how many sampling years discharge observations were
informative for the majority of catchments. Second, we compared model efficiencies with the hydrometeor-
ological conditions (e.g., sum of precipitation and peak discharge magnitude) in each sampling year. To
enable a comparison between catchments, model efficiencies and hydrometeorological variables were nor-
malized. Model efficiencies were normalized by taking the difference between ΔRNP of a sampling year and
the mean ΔRNP of all 10 sampling years, whereas hydrometerological variables were divided by their mean.
Correlations between normalized hydrometerological variables and normalized model efficiency difference
were quantified by the Spearman rank correlation. Correlations were computed for various subgroups of
catchments with different aridity conditions (humid, temperate, and arid), influence of snow‐related runoff
processes (no snow, more than 15% of annual precipitation falling as snow, and more than 50% of annual
precipitation falling as snow), and precipitation seasonality (no seasonality, summer precipitation, and
winter precipitation).

Lastly, we addressed the question of howmany discharge samples are needed to effectively improve classical
regionalization by comparing efficiency differences (ΔRNP) of each sampling year for a different number of
discharge samples. Results were evaluated for the average year, as well as for the most and the least informa-
tive year, which were determined as described above.

Figure 2. Illustration of a sampling campaign with 3, 6, 12, or 24 discharge observations. The discharge observations
(Qsamples) were extracted from the continuous discharge time series (Qobs) of each catchment, whereby the selection
of observations was restricted to a hydrological year. Colors indicate the timing of additional observations that result from
increasing the total number of observations taken in a sampling campaign.
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5. Results
5.1. Value of Discharge Observations for Regionalization

First, we related the value of observations for discharge predictions to model efficiencies of the classical
regionalization and the upper and lower benchmarks (Figure 3; see supporting information for the detailed
values). Efficiencies of the classical regionalization with spatial proximity were about half way between the
efficiencies of the upper and lower benchmarks as opposed to efficiencies related to attribute similarity that
were closer to the lower benchmark than to the upper benchmark. The use of discharge observations for
weighting the 500 parameter sets from the donor catchments improved regionalization with both attribute
similarity and spatial proximity (Figure 3), whereby differences in model performance (ΔRNP) between a
classical and an informed regionalization were most pronounced for attribute similarity (Figure 3b).
Three to 24 discharge observations improved model efficiency of classical regionalization by 24% to 30%
in case of an attribute‐based regionalization and 22% to 26% in case of the spatial proximity‐based approach.
However, for some catchments the selected discharge observations were disinformative in that the use of
information decreased model performance. Such a negative effect occurred mainly for cases with only 3
or 6 observations (for more details see section 5.3).

Although a comparison of the two classical regionalization approaches was not the focus of this study, it was
interesting to notice that spatial proximity outperformed attribute similarity in 65% of the catchments. The
(frequently) superior efficiency of spatial proximity could also be noted in the fact that regionalization with
attribute similarity had to be informed with 24 discharge observations to reach efficiencies comparable to
spatial proximity without any discharge information.

5.2. Mapping the Value of Discharge Observations in Space

Mapping the effect of discharge observations on the classical regionalization allowed to visually separate
regions where observations were highly informative from regions where they were less important
(Figure 4). The map suggests that the value of observations varies in space. Discharge observations had no
or only limited value in large parts of the central region of the eastern United States, such as the Gulf
Coast, the Mississippi Valley, and the Great Lakes Region. In contrast, a pronounced positive effect of dis-
charge measurements was observed for the majority of catchments in the Appalachian Mountains and the

Figure 3. Model efficiency in validation for the 579 study catchments. (a) Model efficiency RNP for predictions with the
lower (LB) and upper (UB) benchmark (yellow colors), and the classical and the informed regionalization (efficiency
of the median sampling year) with attribute similarity (green colors) and spatial proximity (blue colors). (b) Efficiency
difference (ΔRNP) between the classical and the informed regionalization, whereby positive values indicate an increase in
prediction efficiency using information of a few discharge observations.
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western United States. The described spatial pattern can also be observed when plotting the effect of dis-
charge observations against catchment attributes (Figures 5a–5g and 6a–6g). Discharge observations did
in general strongly improve classical regionalization in arid catchments that are most prominent in the
Southwest, and in snow‐dominated catchments in mountainous regions or northern latitudes.
Furthermore, regionalization with spatial proximity was improved by the information of discharge observa-
tions in catchments with a distinct winter precipitation season, which are catchments typically located along
the West Coast.

In addition to the variable value of discharge observations as a function of catchment attributes, information
of a few observations was also more important when the distance between the ungauged catchment and its
donors was relatively large (Figures 5h and 6h).

5.3. About the Information Content of Different Discharge Sampling Years

We used discharge observations from 10 different years to analyze the effect of a sampling year on the regio-
nalization. For the case of 24 discharge observations (Figure 7), the most informative year improved the clas-
sical regionalization with attribute similarity and spatial proximity in 94% and 92% of the catchments,
respectively. The positive effect of discharge measurements on regionalization was observed for most sam-
pling years, although the number of catchments experiencing the positive effect steadily decreased with
increasing rank number. Only in one (attribute similarity) or two (spatial proximity) out of 10 sampling
years, the selected discharge observations were disinformative for the regionalization of discharge in a
majority of catchments.

Given that the value of discharge observations varies across years, the question arises: “what is a good sam-
pling year?” Table 2 presents the correlation coefficients between the hydrometerological conditions of a
sampling year and the corresponding model efficiency in that particular year. Results are only presented
for catchment types with significant correlation coefficients although most correlations were still rather
weak. For the presented catchment types, regionalization with attribute similarity was more sensitive to
yearly hydroclimatic aspects than regionalization with spatial proximity. Overall, the magnitude of the high-
est discharge observation taken in a sampling year had the strongest (negative) effect on model efficiency
among the tested variables, followed by the sum of annual precipitation or winter precipitation. This means
that sampling years characterized by exceptionally high peak discharge, or high annual or winter

Figure 4. Spatial variability of the difference in validation model efficiency (ΔRNP) between a classical regionalization
and an informed regionalization with 24 discharge observations (efficiency of the median sampling year). The size of
the circles is proportional to ΔRNP, that is, larger circles indicate a higher value of a few discharge observations for
improving classical regionalization. Green circles denote catchments which were best simulated using regionalization
with attribute similarity (AS), whereas blue circles indicate catchments which were best simulated using regionalization
with spatial proximity (SP).
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precipitation were the least informative for regionalization of discharge in arid catchments, snow‐dominated
catchments, and winter‐precipitation‐dominated catchments.

5.4. How Many Discharge Observations Are Needed?

Figure 8 presents the effect of the number of discharge observations on the regionalization. An increasing
number of observations in the least informative year not only improved efficiencies but also clearly reduced
the variability in model performance between catchments. More importantly, with the use of more observa-
tions, a sampling year could change from being mostly disinformative to being informative for a consider-
able number of catchments. In a median year, median model performance only slightly increased with an

Figure 5. Difference in validation model efficiency (ΔRNP) between a regionalization with attribute similarity and an informed regionalization with 24 discharge
observations (efficiency of the median sampling year) versus (a–g) catchment attributes and (h) the median distance in the attribute space between the
“ungauged” catchment and its donors. Results are presented for all 579 study catchments, whereby positive efficiency difference indicates an increase in prediction
efficiency using information of a few discharge observations. The lines represent averaged values of the median, the 25th quantile, and the 75th quantile over a
moving window of 11 to 101 catchments (smaller moving windows were used at the lower and upper boundaries of the attribute data as indicated by thinner lines
toward the boundaries).
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increasing number of observations. However, informing regionalization with 24 instead of 3 observations
increased the number of catchments that were better predicted by the informed regionalization by about
10%. In the most informative year, 3 discharge observations had a comparable effect on model
performance as 24 discharge observations.

6. Discussion

The result that a limited number of discharge observations can improve predictions in otherwise ungauged
catchments is in agreement with Rojas‐Serna et al. (2016) and Viviroli and Seibert (2015), who concluded
that a few randomly selected discharge observations or a few observations during mean‐flow conditions

Figure 6. Difference in validation model efficiency (ΔRNP) between a regionalization with spatial proximity and an informed regionalization with 24 discharge
observations (efficiency of the median sampling year) versus (a–g) catchment attributes and (h) the median distance between the “ungauged” catchment and
its donors. Results are presented for all 579 study catchments, whereby positive efficiency difference indicates an increase in prediction efficiency using information
of a few discharge observations. The lines represent averaged values of the median, the 25th quantile and the 75th quantile over a moving window of 11 to 101
catchments (smaller moving windows were used at the lower and upper boundaries of the attribute data as indicated by thinner lines toward the boundaries).
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proved to be a valuable source of information beyond classical regionalization. The value of such
observations for regionalization was generally higher for the attribute‐similarity‐based approach than for
the spatial proximity approach. A possible explanation for this variable value of data is the poorer
performance of the attribute‐based regionalization, which leaves more room for improvement, than for
regionalization with spatial proximity. The superior performance of spatial proximity was also observed in
the comparative regionalization studies of Oudin et al. (2008) and Zhang and Chiew (2009). Factors such
as a relatively dense streamflow gauging network (Lebecherel et al., 2016; Oudin et al., 2008; Yang et al.,
2018) or a suboptimal selection of key catchment attributes (Arsenault & Brissette, 2014; Oudin et al.,
2008) could have favored the spatial proximity approach over regionalization with attribute similarity. In
fact, results of this study showed that donor catchments selected by attribute similarity were up to several
hundreds of kilometers away from the ungauged catchment in many semiarid catchments in the
Southwest. This probably impaired the representativeness of the selected donors for the runoff response
in the ungauged catchment. Under such circumstances and given the relatively dense streamflow gauging
network in the data set, spatial proximity certainly has the advantage that it implicitly considers relevant
attributes influencing major hydrograph aspects. In addition to model efficiency, criteria such as
objectivity and reproducibility could also be seen as a benefit of a spatial proximity‐based regionalization
approach. While in this study, donor catchments were selected by either spatial proximity or attribute

Figure 7. Effect of a sampling year on the value of discharge observations for regionalization in the 579 study catchments.
The 10 sampling years are ranked by the validation model efficiency (RNP) of the informed regionalization with
24 discharge observations. Results are presented for the informed regionalization based on (a) attribute similarity and
(b) spatial proximity.

Table 2
Correlation Between Model Efficiency and Hydrometerological Conditions in Each of the 10 Sampling Years

Catchments

Precipitation sum Discharge magnitude

Annual Winter Summer Snowfall Max. Median Range

Attribute similarity

All −0.04 −0.04 −0.02 −0.02 −0.12 −0.02 −0.02
Arid −0.08 −0.13 0.03 −0.13 −0.20 −0.10 −0.04
Snowy −0.23 −0.20 −0.11 −0.05 −0.24 −0.09 0.03
Winter precip. −0.14 −0.15 −0.05 −0.05 −0.16 −0.04 −0.02
Spatial proximity
All 0.00 0.02 −0.04 0.01 −0.09 0.01 −0.02
Arid −0.04 −0.05 −0.02 −0.06 −0.12 −0.03 −0.08
Snowy −0.12 −0.06 −0.14 0.00 −0.16 −0.05 −0.09
Winter precip. −0.01 −0.01 −0.05 0.00 −0.07 0.00 −0.05

Note. Spearman rank correlation coefficients were calculated for normalized variables and normalized model efficiencies for all catchments (n = 579), arid
catchments (aridity index ≥1.2, n = 110), snow‐dominated catchments (percentage of annual precipitation falling as snow ≥50%, n = 71), and catchments with
predominantly winter precipitation (seasonality index ≤−0.2, n= 104). Significant correlations (p value <0.05) are marked in bold letters. Model efficiency used
for calculating correlations is the difference in validation model efficiency (ΔRNP) between a classical regionalization with attribute similarity or spatial
proximity and an informed regionalization with 24 discharge observations.
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similarity, attempts of combining both approaches have been shown to be a promising approach for the
selection of potential donor catchments (Buytaert & Beven, 2009; Oudin et al., 2008; Samuel et al., 2011;
Yang et al., 2018; Zhang & Chiew, 2009).

Independent of the classical regionalization approach, discharge observations were most informative in arid
catchments, snow‐dominated catchments, and winter‐precipitation‐dominated catchments. These catch-
ments generally have a distinct runoff regime with a pronounced high‐flow period. The discharge observa-
tions selected to inform the regionalization in this study were sampled during these periods of high flow.
They therefore provided information for the regionalization at a time when dominant runoff processes were
active. These results are comparable to those of Viviroli and Seibert (2015), who reported that discharge
observations during the snowmelt and ice melt season were most valuable for informing regionalization
in snow‐dominated or glaciated catchments. They furthermore showed that more observations were needed
to effectively inform regionalization for catchments with a predominantly pluvial regime because of the
randomness of rain events between and within years as opposed to the reoccurring process of snowmelt
and ice melt. The variability in precipitation and the related timing of the dominant runoff processes could
also provide an explanation for the limited value of discharge observations found in large parts of the central
region of the eastern United States.

The value of discharge observations for the regionalization varied across sampling years, whereby years with
high sums of annual or winter precipitation and therefore relatively high discharge events were the least
informative ones. This was unexpected at first, because it has been shown that runoff models could be
calibrated with a limited number of discharge observations, especially if they were sampled during wet
periods (Melsen et al., 2014; Vrugt et al., 2006; Yapo et al., 1996) or peak events (Pool et al., 2017; Seibert
&McDonnell, 2015) when dominant runoff processes were active. However, under unusually wet conditions
special runoff processes might govern catchment runoff responses. Using discharge observations taken
during such unusual conditions can inform the regionalization with data of limited representativeness,
which ultimately favors parameter sets that reproduce rather exceptional runoff responses. However, it is
important to note that the correlations between the value of observations and the hydrometeorological con-
ditions in a sampling year were rather weak and only significant for arid catchments, snow‐dominated
catchments, and winter‐precipitation‐dominated catchments. These results therefore have to be interpreted
with some caution. More detailed insights into the value of individual sampling years could be gained by an
inductive approach that addresses the influence of large‐scale climate phenomena such as El Niño–Southern
Oscillation, rating curve uncertainties affecting the value of discharge observations at peak flows, or
disinformation at the event level introduced by a mismatch between precipitation input and runoff response
(Beven & Westerberg, 2011). However, such an in‐depth analysis on the value of sampling years was not
conducted within this study.

Figure 8. Effect of the number of discharge observation on the difference in validationmodel efficiency (ΔRNP) between a
classical regionalization and an informed regionalization in the 579 study catchments. The effect of a variable number
of observations on regionalization with (a) attribute similarity and (b) spatial proximity is presented for the most
informative sampling year, the median sampling year, and the least informative sampling year. Positive efficiency
differences (ΔRNP) indicate an increase in prediction efficiency using information of a few discharge observations.
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The sampling year not only influenced model performance but also affected the number of observations
needed to inform regionalization. Increasing the number of discharge observations strongly improved regio-
nalization for observations collected in the least informative year, probably because the effect of an indivi-
dual unusual event could be balanced by additional and more representative observations. In contrast, the
characteristic runoff response could be captured by as few as three observations if these observations were
collected in the most informative sampling year.

The results of this study are based on the strategic extraction of a few discharge observations from the
observed time series of catchments and therefore provide insights in what could be achieved at best. In prac-
tice, decisions on the number of observations, the dates of observations, or the sampling year may be
restricted by economical or organizational factors. Cost‐benefit analysis for real case studies could be a
way to bridge the gap between the theoretical and practical value of a limited number of discharge observa-
tions for the prediction in ungauged catchments.

An additional practical limitation of this study is the fact that discharge observations used to inform regio-
nalization correspond to mean daily values, whereas observations collected during field campaigns are
almost instantaneous. The differences between instantaneous discharge values (reported discharge data at
15‐min interval) and mean daily discharge were looked at for eight catchments representing the typical
range of catchment areas (10, 100, 1,000, and 10,000 km2) encountered in the CAMELS data set. Thereby
it could be observed that mean daily discharge can deviate considerably from instantaneous discharge obser-
vations at days with peak flows. However, instantaneous measurements can be regarded as representative
for the mean daily values during most other periods including event recessions and low flow periods when
within‐day flow variations are relatively small. Similarly, a more detailed analysis of the value of subdaily
discharge observations by Viviroli and Seibert (2015) indicated a limited added value of several subsequent
instantaneous discharge observations within a few hours.

7. Conclusions

Many catchments lack continuous discharge time series and the prediction of discharge relies on regionali-
zation. However, it might still be possible to collect a limited number of discharge observations during short
field campaigns. In this study, we evaluated the value of such a limited number of discharge observations for
informing parameter regionalization using a large‐sample data set of the United States. Results demon-
strated that a few discharge observations improved regionalization in the majority of catchments and that
observations were especially effective in arid catchments, snow‐dominated catchments, and winter‐precipi-
tation‐dominated catchments. Discharge observations from years with moderate to low peak flow magni-
tudes were the most informative ones, whereby 3 observations could be of comparable value as 24
observations if collected in these most informative years. The results demonstrate the value of a small num-
ber of streamflow observations and indicate that short field campaigns can improve the basis for decision
making in ungauged basins.
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