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Applications of runoff models usually rely on long and continuous runoff time series for model calibra-
tion. However, many catchments around the world are ungauged and estimating runoff for these catch-
ments is challenging. One approach is to perform a few runoff measurements in a previously fully
ungauged catchment and to constrain a runoff model by these measurements. In this study we investi-
gated the value of such individual runoff measurements when taken at strategic points in time for apply-
ing a bucket-type runoff model (HBV) in ungauged catchments. Based on the assumption that a limited
number of runoff measurements can be taken, we sought the optimal sampling strategy (i.e. when to
measure the streamflow) to obtain the most informative data for constraining the runoff model. We used
twenty gauged catchments across the eastern US, made the assumption that these catchments were
ungauged, and applied different runoff sampling strategies. All tested strategies consisted of twelve run-
off measurements within one year and ranged from simply using monthly flow maxima to a more com-
plex selection of observation times. In each case the twelve runoff measurements were used to select 100
best parameter sets using a Monte Carlo calibration approach. Runoff simulations using these ‘informed’
parameter sets were then evaluated for an independent validation period in terms of the Nash-Sutcliffe
efficiency of the hydrograph and the mean absolute relative error of the flow-duration curve. Model per-
formance measures were normalized by relating them to an upper and a lower benchmark representing a
well-informed and an uninformed model calibration. The hydrographs were best simulated with strate-
gies including high runoff magnitudes as opposed to the flow-duration curves that were generally better
estimated with strategies that captured low and mean flows. The choice of a sampling strategy covering
the full range of runoff magnitudes enabled hydrograph and flow-duration curve simulations close to a
well-informed model calibration. The differences among such strategies covering the full range of runoff
magnitudes were small indicating that the exact choice of a strategy might be less crucial. Our study cor-
roborates the information value of a small number of strategically selected runoff measurements for sim-
ulating runoff with a bucket-type runoff model in almost ungauged catchments.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Sustainable management of water resources and mitigation of
natural hazards in ungauged catchments strongly rely on accurate
and reliable runoff estimates often predicted by rainfall-runoff
models (Sivapalan et al., 2003). Runoff models used in hydrology
all consist of parameters representing different catchment
characteristics. The effective values of these parameters cannot be
measured directly, because of their conceptual meaning or
incommensurability issues. As a consequence, parameter values
need to be defined or adapted in a calibration process by comparing
observed and simulated catchment runoff response (Beven, 2012).
After a decade of research on prediction of runoff in ungauged
basins (PUB), it still remains a considerable challenge to calibrate
runoff models for data scarce catchments (Hrachowitz et al., 2013).

A variety of approaches have been developed to estimate model
parameters for ungauged catchments. For example, regionalization
methods were proposed that either estimate individual parameter
values from regressions relating model parameters to catchment
characteristics or that transfer entire parameter sets from gauged
donor catchments to the ungauged target catchment based on
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proximity or similarity measures (see e.g. Parajka et al. (2013) for
an extended discussion). Hydrograph predictions from regionaliza-
tion could be improved given that a few runoff measurements
were available to further constrain model parameters (Rojas-
Serna et al., 2006; Drogue and Plasse, 2014; Viviroli and Seibert,
2015; Rojas-Serna et al., 2016). Some authors assumed that a short
and intensive field campaign could be carried out in the catchment
of interest to collect data for model calibration. They tested the
value of combining runoff data and additional data such as ground-
water dynamics (Freer et al., 2004; Juston et al., 2009; Seibert and
McDonnell, 2013), soil moisture (Hughes et al., 2014) or hydro-
chemical tracers (Uhlenbrook and Sieber, 2005) for model
calibration.

The PUB initiative determined the evaluation of the value of
runoff data for model calibration as one of their main objectives
(Sivapalan et al., 2003). This induced a series of studies exploring
the minimum length of a runoff time series necessary to obtain
robust model calibrations. First studies typically tested model sen-
sitivity related to continuously measured runoff. Between two and
eight years of runoff data were reported as minimum requirement
for robust model parameterizations independent of the selected
calibration period (Harlin, 1991; Yapo et al., 1996; Xia et al.,
2004; Vrugt et al., 2006; Merz et al., 2009). While there is a general
agreement that model performance tends to improve with an
increased length of calibration data, much smaller data sets have
been shown to be of comparable value as long continuous time ser-
ies (McIntyre and Wheater, 2004; Perrin et al., 2007; Seibert and
Beven, 2009, Singh and Bárdossy, 2012; Seibert and McDonnell,
2013; Melsen et al., 2014). Perrin et al. (2007) successfully cali-
brated a runoff model with 350 runoff measurements selected ran-
domly from an almost forty year continuous runoff series. Seibert
and Beven (2009) reported that approximately sixteen runoff mea-
surements randomly picked within one hydrological year could
already provide information for an acceptable model calibration.
An alternative to randomly extracting measurements from a time
series is the selection of runoff samples in a strategic manner.
Seibert and Beven (2009) demonstrated that maximum flows or
a combination of maximum and recession data contained more
information than minimum or mean flows. Results from Seibert
and McDonnell (2013) indicated that one fully gauged event or
ten observations during different high flow situations had a similar
information value as three months of continuously measured data.
Extracting unusual events from a time series, Singh and Bárdossy
(2012) achieved reliable model simulations with less than 10% of
the data from a continuous time series. Moreover, event based
sampling strategies resulted in better model performances than
strategies with measurements at fixed time intervals (McIntyre
and Wheater, 2004; Juston et al., 2009; Seibert and McDonnell,
2013). Model calibration with a limited number of runoff measure-
ments performed best in relatively wet catchments (Perrin et al.,
2007; Sun et al., 2017), which is a common observation in rainfall
runoff modelling even when long continuous time series are avail-
able, or when runoff samples are selected during a wet period
(Yapo et al., 1996; Vrugt et al., 2006; Kim and Kaluarachchi,
2009; Melsen et al., 2014; Correa et al., 2016). In addition, the con-
sideration of hydrological variability and of hydrologically impor-
tant processes was found to be essential for the calibration
process and the resulting simulation uncertainty (Harlin, 1991;
Vrugt et al., 2006; Konz and Seibert, 2010; Singh and Bárdossy,
2012).

The present study aimed at finding the most informative runoff
measurements for calibrating a hydrologic model with a limited
number of strategically selected runoff samples in order to accu-
rately simulate the hydrograph and the flow-duration curve
(FDC) in almost ungauged catchments. Based on data from twenty
gauged catchments in the eastern US, which were treated as hypo-
thetically poorly gauged catchments, we evaluated the following
assumptions:

1) There is an optimal strategy to decide on when to measure
runoff in an ungauged catchment to obtain the most infor-
mative data for constraining a runoff model.

2) The optimal strategy is generally valid, i.e., does not depend
on the catchment or simulation evaluation criteria.

3) Runoff measurements chosen with an optimal sampling
strategy are of comparable value as a long continuous runoff
time series.

In our study we assume that measurements actually can be
taken at these strategic points in time such as on the day with
maximum flow during a month. In practice, this is obviously not
possible as the runoff during a month is not known beforehand.
However, our study gives an indication on how useful a certain
strategy could be at best.
2. Data and methods

2.1. Study catchments and runoff model

This study was based on twenty catchments across the eastern
US (Fig. 1). Catchment data was extracted from the freely available
large scale dataset of Newman et al. (2015). The dataset with over
600 basins spread over the contiguous US includes catchments
with only minimal human disturbances and complete thirty-year
forcing and runoff data series. We selected twenty catchments that
are similar in terms of wetness and precipitation seasonality, but
different regarding the importance of snow related runoff pro-
cesses. This small catchment sample can be considered as a rela-
tively controlled subset of the large dataset with small
hydroclimatic variation, but representing some of the most com-
mon runoff regime types in the US. The selected catchments
(Table 1) vary in area from 148 to 2925 km2 with steepest eleva-
tion gradients in or close to the Appalachian Mountains. Some
catchments are to a large degree composed of wetlands and lakes
account for up to 6% of the area of three of these catchments (C1,
C2 and C20 in Table 1; Lehner and Döll, 2004). All catchments
are humid and receive precipitation throughout the entire year.
Snow processes dominate the runoff regime in northern latitudes
where 10–28% of the annual precipitation falls as snow. The contri-
bution of baseflow to runoff varies between the catchments from
23 to 69% indicating a large variation in runoff response
characteristics.

Continuous daily runoff time series at the catchment outlets
were simulated with a bucket-type runoff model, namely the
HBV model (Hydrologiska Byråns Vattenbalansavdelning;
Bergström, 1976; Lindström et al., 1997) in the version HBV-light
(Seibert and Vis, 2012). The HBV model is forced with daily tem-
perature and precipitation and monthly potential evaporation
data. Hydrological processes are modelled with four model routi-
nes representing snow, soil water, groundwater and routing
related processes. Snow accumulation and snowmelt are calcu-
lated in the snow routine using a degree-day method. Together
with rainfall and potential evaporation, snowmelt is used to deter-
mine the actual evaporation and groundwater recharge in the soil
routine. The groundwater routine consists of a shallow and a deep
groundwater storage where the contribution of groundwater to
peak runoff, intermediate runoff and baseflow is calculated. The
routing routine transforms these three runoff components into
the hydrograph at the catchment outlet by a triangular weighting
function.
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Fig. 1. Location of the twenty study catchments across the eastern US (catchment shapefiles from Newman et al. (2015); state boundaries and shaded relief from ESRI and U.
S. Geological Survey (2011)).

Table 1
Information on the twenty study catchments. Snow [%]: percentage of annual precipitation falling as snow; precipitation seasonality: calculated according to Coopersmith et al.
(2014), low seasonality for values �<0.25; aridity index: ratio of sum of potential evaporation and sum of precipitation; runoff coefficient: ratio of runoff and sum of precipitation;
baseflow [%]: percentage of runoff classified as baseflow, calculated based on the minimum runoff in fixed 5 day time intervals using the U.S. Geological Survey (2014) EflowStats
R-package; wetland area [%]: percentage of catchment area covered by partial wetlands according to Lehner and Döll (2004).

ID USGS station number and name Area
[km2]

Mean elevation
[m a.s.l.]

Snow
[%]

Precipitation
seasonality

Aridity
index

Runoff
coefficient

Baseflow
[%]

Wetland
area [%]

C1 01013500 Fish River near Fort Kent, ME 2260 379 27.6 0.17 0.63 0.54 68.9 92.2
C2 01031500 Piscataquis River near Dover-Foxcroft, ME 771 452 24.5 0.12 0.60 0.58 43.2 95.9
C3 01078000 Smith River near Bristol, NH 222 486 19.7 0.11 0.62 0.49 44.3 97.8
C4 01423000 West Branch Delaware River at Walton, NY 860 690 18.3 0.11 0.62 0.49 46.0 5.1
C5 01539000 Fishing Creek near Bloomsburg, PA 709 478 12.5 0.11 0.69 0.51 46.1 9.1
C6 02051500 Meherrin River near Lawrenceville, VA 1429 124 3.5 0.07 0.85 0.27 40.7 0.0
C7 02143000 Henry Fork near Henry River, NC 215 593 2.2 0.06 0.76 0.39 61.5 0.0
C8 02314500 Suwannee River at US 441 at Fargo, GA 2925 69 0.0 0.26 0.88 0.19 69.5 99.1
C9 02361000 Choctawhatchee River near Newton, AL 1776 127 0.0 0.16 0.82 0.31 52.5 0.0
C10 02464000 North River near Samantha, AL 577 157 0.9 0.12 0.70 0.37 29.6 0.0
C11 02472000 Leaf River near Collins, MS 1924 131 0.3 0.14 0.75 0.32 31.5 28.4
C12 03015500 Brokenstraw Creek at Youngsville, PA 831 486 16.3 0.14 0.63 0.54 40.2 21.4
C13 03069500 Cheat River near Parsons, WV 1869 984 16.4 0.11 0.61 0.60 36.2 21.6
C14 03144000 Wakatomika Creek near Frazeysburg, OH 362 308 7.4 0.13 0.84 0.36 36.6 0.0
C15 03159540 Shade River near Chester, OH 404 246 5.9 0.10 0.82 0.34 25.6 0.0
C16 03285000 Dix River near Danville, KY 823 349 3.5 0.10 0.77 0.40 23.0 0.0
C17 03488000 N F Holston River near Gate City, VA 572 976 6.8 0.11 0.81 0.38 46.1 0.0
C18 03498500 Little River near Maryville, TN 696 1141 2.9 0.11 0.64 0.41 51.8 0.0
C19 03500240 Cartoogechaye Creek near Franklin, NC 148 1121 2.4 0.09 0.55 0.45 68.1 0.0
C20 04256000 Independence River at Donnattsburg, NY 230 478 24.7 0.11 0.60 0.62 47.8 97.6
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The HBV model allows runoff to be simulated in a semi-
distributed way by disaggregating a catchment into elevation
bands. We therefore split the catchments into elevation bands of
200 m using SRTM elevation data (Shuttle Radar Topography Mis-
sion; Jarvis et al., 2008). Temperature and precipitation data for
each elevation band were interpolated with lapse rates of 0.6 �C
per 100 m and 10% per 100 m, respectively. Potential evaporation
was assumed to be uniform over all elevation bands and was cal-
culated with the Priestley-Taylor equation.

2.2. Definition of sampling strategies

Sampling strategies were defined considering both existing
hydrological knowledge from previous studies (see Section 1) and
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practical aspects for the implementation of a runoff monitoring in
the ungauged catchment of interest (Fig. 2). We defined a total of
thirteen sampling strategies that were categorized as simple (S),
intermediate (I) or complex (C) according to their hydrological
background. For practical reasons it was interesting to examine
sampling strategies with runoff samples at a fixed time interval
(e.g. SDOM). Runoff samples of event peaks or during low flow (e.g.
SMax or SMin) could also be collected with relatively little effort as
long as the exact timing was not crucial. From a hydrological point
of view, strategies capturing runoff variability or dominant runoff
processes could be promising. For example, the strategy IQuantile
contains samples over the full range of runoff magnitudes,
CMax_Min_Wetness takes into account the different runoff response of
catchments after dry and wet periods or additional samples are
taken during the snowmelt season with CMax_Snowmelt. All tested
sampling strategies were restricted to twelve runoff sampleswithin
a single hydrological year (1st of October until 30th of September)
that were extracted from the continuous runoff time series of each
catchment. The decision to test the temporal distribution of runoff
at twelve times within a year was chosen to represent a balance
between a minimum number of measurements assumed to be nec-
essary for model calibration and the practical limitations of mea-
suring runoff at several times.

2.3. Modelling approach

The runoff model was calibrated for the twenty study catch-
ments with a limited number of runoff samples. To run the
model, twelve runoff samples selected from different hydrologi-
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cal years and the continuous precipitation and temperature data
series were used in all cases. The data of fourteen hydrological
years from 1983 to 1996 were used for independent model cal-
ibrations. A warm-up period of 2.75 years preceded each calibra-
tion period to ensure suitable initial values for the state
variables. Model parameters of each calibration period were
evaluated in an independent continuous validation time period
from 1997 to 2010 in terms of how well the simulated runoff
represented the observed hydrograph and the flow-duration
curve. The two modelling time periods (1983–1996 and 1997–
2010) were generally similar with respect to the yearly sum of
precipitation, the yearly sum of runoff, the mean annual temper-
ature and the percentage of precipitation falling as snow in each
of the twenty study catchments (statistically evaluated using a
non-parametric Mann-Whitney-U test). The detailed modelling
steps were as follows:

1. 100,000 parameter sets were randomly generated within pre-
defined parameter ranges (Table 2) and assuming a uniform
parameter distribution.

2. The model was run for each parameter set. The simulated runoff
was compared to the twelve observed runoff samples of each
sampling strategy and calibration period. The objective func-
tions used for comparison were the model efficiency (Nash
and Sutcliffe, 1970) calculated directly on the runoff data (Reff)
and the model efficiency calculated on the log-transformed run-
off data (Reff_logQ). The 100 best parameter sets of each calibra-
tion period were retained for each strategy and objective
function.
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Table 2
Specification of HBV-light model parameters calibrated in this study according to Seibert and Vis (2012).

Parameter Meaning Unit Minimum Maximum

Snow routine
TT Threshold temperature �C �2 2.5
CFMAX Degree-day factor mm�C�1 d�1 0.5 10
SFCF Snowfall correction factor – 0.5 1.2
SCR Refreezing coefficient – 0 0.1
CWH Water holding capacity – 0 0.2

Soil routine
FC Maximum soil moisture storage (SM) mm 100 550
LP Threshold for reduction of evaporation (SM/FC) – 0.3 1
BETA Shape coefficient – 1 5

Groundwater routine
PERC Maximal flow from upper to lower box mm d�1 0 4
UZL Maximal storage in the soil upper zone mm 0 70
K0 Recession coefficient of fast response d�1 0.1 0.5
K1 Recession coefficient of intermediate response d�1 0.01 0.2
K2 Recession coefficient of baseflow d�1 0.00005 0.1

Routing routine
MAXBAS Routing, length of weighting function d 1 5
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3. The 100 best parameter sets were used to simulate runoff in the
validation period. An ensemble mean hydrograph and ensemble
mean FDC were calculated from the 100 runoff simulations. The
ensemble mean hydrograph was evaluated in terms of Reff. The
ensemble mean FDC was evaluated by calculating the mean
absolute relative error at 99 evaluation points of the FDC (RFDC).
The evaluation points were selected at equally spaced intervals
of runoff volume between 0.1 and 0.99 exceedance probability,
which is a similar approach to that suggested by Westerberg
et al. (2011).

Model performance values in validation were normalized by
relating them to an upper and a lower benchmark (Eq. (1)) as sug-
gested by Girons Lopez and Seibert (2016). The upper benchmark
represented the best possible model performance that could be
achieved for a particular catchment. It was calculated with the
simulation approach described above with the exception that the
model was calibrated against the full continuous runoff time series
of all fourteen years. While the upper benchmark parameter sets
for the hydrograph were selected by applying Reff or Reff_logQ, RFDC

was used in the case of the FDC. The lower benchmark was calcu-
lated from 1000 randomly selected parameter sets and was a mea-
sure of how well the model would simulate runoff without any
runoff information for a calibration. The identical normalization
was applied for Reff and RFDC using the equation

R� ¼ Rss � Rlb

Rub � Rlb
ð1Þ

with R⁄ as the normalized model performance (specifically R⁄eff and
R⁄FDC), Rss as the model performance based on the sampling strategy,
Rub as the model performance of the upper benchmark and Rlb as the
model performance of the lower benchmark. Normalized perfor-
mance values ranged from –inf to 1. A normalized performance of
one indicates that model calibration with a particular sampling
strategy was as good as a well-informed model calibration, whereas
values below zero reveal that model calibration with a small number
of strategically selected runoff measurements performs worse than
simulations with random parameter sets.

Additionally, we evaluated the influence of the thirteen differ-
ent sampling strategies for constraining model parameters. Since
parameter values vary between catchments, we evaluated the
range of parameter values, which had been calibrated based on a
particular sampling strategy. Parameter ranges after calibration
(0.05–0.95 quantile of all 100 parameter values) were normalized
by their allowed range before calibration to make the different
parameters comparable.
3. Results

When calibrated against the complete runoff time series, model
performances were generally good for both the hydrograph (Reff)
and the FDC (RFDC) (median Reff 0.76 and median RFDC 0.15;
Fig. 3a and b, where the best possible model performance is 1.0
for the hydrograph and 0.0 for the FDC). As expected, model perfor-
mances were poorer for simulations with a random parameteriza-
tion (median Reff 0.45 and median RFDC 0.43). Model calibrations
based on twelve runoff values selected by the different sampling
strategies mostly resulted in performances between the two
benchmarks. The hydrograph efficiency Reff for all catchments
and all strategies (Fig. 3a) ranged from 0.45 to 0.74 (median of
0.64) when parameter sets were selected based on Reff. Calibrating
the model with Reff_logQ resulted in similar model performance for
the hydrograph (Reff from 0.48 to 0.74 with a median of 0.66) as
calibrations with Reff. Simulations of the FDC with a limited num-
ber of measurements (Fig. 3b) were considerably better when
using the objective function Reff_logQ instead of Reff. Median RFDC

was 0.26 (range from 0.16 to 0.97) for calibrations with Reff_logQ

and 0.34 (range from 0.19 to 5.45) for calibrations with Reff.
Model calibration with runoff data of a sampling strategy

resulted in fourteen ensemble mean efficiencies for each catch-
ment. The median of these fourteen values is an indicator of the
information value of a particular strategy for model calibration.
Ranking sampling strategies according to their median R⁄

eff and R⁄FDC
values revealed an interesting pattern with marked differences for
the two evaluation criteria (Fig. 4a and b). The best ranked strategies
for simulating the hydrograph (Fig. 4a) consisted of maximum runoff
values mostly in combination with data in the recession of an event
(e.g. CMax_Snowmelt). Strategies that combine maximum runoff with
minimum runoff or runoff taken at a fixed time interval ranked in
the middle (e.g. SMax_Min). The poorest model performance was
achieved by sampling minimum and mean runoff or by taking sam-
ples at a fixed time interval (e.g. SMin). The described ranking pattern
for the hydrograph was almost reversed when strategies were eval-
uated in terms of their information value for the FDC (Fig. 4b). The
rank of each strategy was more consistent between the study catch-
ments for the FDC than for the hydrograph. The differences in the
ranking of strategies between catchments for the hydrograph simu-
lation could partly be explained by catchment area and snowfall
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Fig. 3. Model performance for the twenty catchments as validated in terms of a) hydrograph efficiency Reff and b) FDC efficiency RFDC for model calibrations with the upper
benchmark (continuous fourteen year calibration period), the lower benchmark (random generation of parameter sets) and the sampling strategies (twelve runoff samples)
using either Reff or Reff_logQ as objective function. Best possible model performance is 1.0 for Reff and 0.0 for RFDC. Model performance related to the benchmarks was calculated
as the median ensemble mean model performance of all calibration years for each catchment. Model performance of the sampling strategies is summarized by the median
model performance of all strategies for each catchment. Strategy performance was calculated on the basis of the median ensemble mean performance of all calibration years.
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ratio, whereby large catchments or small snow-dominated catch-
ments tended to form clusters with a slightly different ranking of
the sampling strategies. Other catchment characteristics such as
mean elevation, precipitation seasonality, aridity, importance of
baseflow or percentage of wetland area did not help to explain the
mentioned variations. Not all strategies were more informative for
model calibration than the lower benchmark with random parame-
ter sets (Fig. 4). Especially catchments with a high model perfor-
mance of the lower benchmark (Reff >0.7), such as catchment C3,
C9 and C11, had many sampling strategies with a negative normal-
ized model performance for the hydrograph. Negative R⁄FDC values
were most prominent in the low ranked sampling strategies
(IMean_Seasonal, CMax_Rec2, CMax_Snowmelt, and CMax_Rec1), suggesting that
these strategies cannot be considered as an acceptable option for
deciding on when to make runoff measurements in many
catchments.

To evaluate the impact of using either Reff or Reff_logQ as objective
function on the evaluation of the different sampling strategies, we
focused on the median R⁄

eff and median R⁄FDC values of a strategy over
all catchments (Fig. 5a and b). Samples of maximum runoff were
always crucial for a good hydrograph simulation, whereby the mag-
nitude or timing of additional samples seemed to be of minor impor-
tance (e.g. SMax or CMax_Rec_Dom). R⁄eff values were between 0.52 and
0.72 for strategies containing high runoff values, independent of
which of the two objective functions was applied in model calibra-
tion. In contrast, R⁄FDC clearly differed for some strategies as a func-
tion of the objective function. All sampling strategies with high
runoff values poorly constrained model parameters for FDC simula-
tions when calibrated based on Reff. Using the objective function
Reff_logQ for model calibration strongly improved R⁄FDC for strategies
combining maximum runoff with minimum runoff or with runoff
samples at a fixed time interval (IMax_Min_Dom, CMax_Rec_Dom, SMax_Min

and CMax_Min_Wetness). Sampling strategies covering low and mean
flows (SMin, SMean, SDOM and IQuantile) mostly led to good R⁄FDC values
with slightly higher model performance for calibrations based on
Reff_logQ (R⁄FDC from 0.78 to 0.92). Model calibration on Reff_logQ guided
parameter selection in a way that some sampling strategies provided
informative runoff samples for both hydrograph and FDC, whereas
the value of sampling strategies was restricted to either of these sim-
ulation aims for calibrations with Reff (Fig. 5a and b).

Model performance generally varied greatly between calibra-
tion periods for all strategies and catchments (Fig. 6a and b; stan-
dard deviation shown on y-axis). However, it was not possible to
establish any relation between hydroclimatic conditions (e.g.
yearly or seasonal precipitation, runoff or snowfall) or variations
in runoff measurement magnitudes and model performance of
the calibrated model. The differences in yearly model performance
were smaller for model calibrations with informative sampling
strategies, which was indicated by the negative correlation
between the median model performance and the standard devia-
tion of the model performance for calibrations based on Reff_logQ

(Fig. 6a and b). Also, the relative value of sampling strategies for
the simulation of the hydrograph or the FDC was consistent over
the fourteen calibration periods (Fig. 7).

We were further interested in how sampling strategies con-
strained the different model parameters during calibration
(Fig. 8). Parameters of the snow routine had mostly large normal-
ized parameter ranges for all sampling strategies indicating that
model simulations were often not sensitive to the parameter value.
This was different for the five catchments with the highest per-
centage of precipitation falling as snow, where TT, CFMAX and
SFCF were clearly better constrained with normalized ranges as
low as 0.42, 0.25, and 0.65. Parameters influencing the water bal-
ance (soil routine and PERC of groundwater routine) were better
constrained by strategies that sample low and mean flow. How-
ever, hydrograph related parameters (UZL, K0 and MAXBAS in



Fig. 4. Normalized model performance as validated for a) the hydrograph (R*eff) and b) the FDC (R*FDC) for model calibrations with the sampling strategies using Reff_logQ as
objective function. The normalized performance values correspond to the median ensemble mean of all calibration years. Sampling strategies were ranked according to their
model performance. Sampling strategies on the y-axis are ordered by their mean rank over all catchments. Colours indicate the rank of a sampling strategy for a particular
catchment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the groundwater and routing routine) were generally more similar
if the model was calibrated with sampling strategies containing
maximum runoff.

4. Discussion

The modelling results indicate that a limited number of strate-
gically selected runoff samples is informative for hydrograph and
FDC simulations in almost ungauged catchments. Different combi-
nations of runoff samples had a different information value for
simulating the hydrograph and the FDC. Possible factors contribut-
ing to this difference could be the runoff distribution resulting
from a particular sampling strategy (boxplots in Fig. 2) and the
model parameters most sensitive at the point in time a runoff sam-
ple was provided for calibration. Model parameters of the ground-
water and the routing routine that define the timing and the shape
of the hydrograph had the least uncertainty when the model was
calibrated with runoff samples of high flows and recessions. The
benefit of maximum runoff and event data for model calibration
was also reported by Seibert and Beven (2009) and Seibert and
McDonnell (2013). Our results also confirm the conclusion of sev-
eral studies (Yapo et al., 1996; Vrugt et al., 2006; Kim and
Kaluarachchi, 2009; Melsen et al., 2014; Correa et al., 2016) that
rather average and dry runoff periods, represented by samples of
mean and minima flows, are less informative for hydrograph pre-
diction than wet periods. For FDC simulations it is crucial to accu-
rately model runoff magnitudes, whereas the exact shape of the
hydrograph is less important. Therefore, sampling strategies



Fig. 5. Normalized model performance as validated for the hydrograph (R*eff) and the FDC (R*FDC) for model calibrations with the sampling strategies using (a) Reff and (b) Reff_logQ
as objective functions. Each symbol represents the median model performance for a particular strategy over all catchments. It was calculated on the basis of the median ensemble
mean of all calibration years. Error bars indicate the 0.25–0.75 quantile model performance of all catchments for the respective strategy. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of the normalized model performance and the standard deviation of the normalized model performance as validated for a) the hydrograph (R*eff) and b) the
FDC (R*FDC) for model calibrations with the sampling strategies using Reff_logQ as objective function. Each coloured symbol represents the median model performance and the
median standard deviation of the model performance for a particular strategy over all catchments. The median and the standard deviation were calculated on the basis of the
ensemble mean of all calibration years. rS corresponds to the Spearman’s rank correlation coefficient between the median R*eff and the standard deviation of R*eff. The inset plot
makes the same comparison, but indicating the values for each catchment separately. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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resulting in a comparable runoff distribution as a continuous long-
term runoff time series were most valuable for simulating the FDC.
These strategies, e.g. SDOM, SMean or IQuantile, were most effective in
constraining parameters with strong impact on the water balance
(soil routine and percolation parameters). None of the sampling
strategies noticeably reduced the high uncertainty of snow related
model parameters, probably because many study catchments had
no or little snowfall.

It is interesting that strategies combining samples of maximum,
minimum and recession flow could become informative for the



Fig. 7. Normalized model performance as validated for the hydrograph (R*
eff) and

the FDC (R*FDC) for model calibrations with the sampling strategies using Reff_logQ as
objective function. Each symbol represents the median model performance for a
particular strategy over all catchments for one calibration year. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 8. Normalized model parameter ranges resulting from model calibrations with
the sampling strategies using Reff_logQ as objective function. Parameter ranges (0.05–
0.95 quantile) after calibration were normalized by their allowed range before
calibration. The symbols represent the median normalized parameter range of all
catchments related to a particular strategy. This range was calculated on the basis
of the median normalized parameter range of all calibration years. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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prediction of the FDC when HBV was calibrated with Reff_logQ

instead of Reff. This considerable change could be explained by
the distinct focus of the two objective functions during calibration.
Reff_logQ emphasises low and mean flow giving more weight to the
accurate simulation of a range of magnitudes, while the timing of
peak flows is of minor importance. This result demonstrates the
importance of carefully choosing the objective function used to
optimize model simulations.

The ranking of sampling strategies according to their related
model performance (Fig. 4a and b) was clearly less consistent
between the twenty catchments for the hydrograph than for the
FDC. We tested various catchment characteristics to explain these
ranking differences, but no variable was found that could clearly
explain the results. Similarly, it was not possible to establish con-
sistently strong relationships between catchment characteristics
and the yearly model performance. The sample of twenty catch-
ments might have been too small to find strong relationships
between catchment characteristics and model performance as
observed by Perrin et al. (2007) in a comparable modelling study
framework.

In this study we decided to analyse the modelling results in
relation to benchmarks instead of focusing on absolute model per-
formance values. As suggested by Girons Lopez and Seibert (2016),
we related model performance based on a limited number of runoff
measurements to model calibrations of a well and a non-informed
situation. The concept of benchmarks is especially beneficial when
predicting runoff for almost ungauged catchments, where the
value of taking a few runoff measurements compared to investing
efforts in long-term gauging stations is of interest. Absolute model
performance becomes more important for practical applications as
efficiencies are too low for a reasonable runoff simulation. At this
point it is also important to note that low normalized performance
does not imply a poor model calibration. For example, the catch-
ments C3, C9 and C11 had many negative normalized performance
values due to high Monte Carlo efficiencies. However hydrographs
of these catchments were all well simulated in absolute terms. We
would also like to stress that the interpretation of the results was
not affected by the use of benchmarked performances, because the
normalization of model performance did not change the hierarchy
of the thirteen sampling strategies within a catchment.

The proposed sampling strategy approach was implemented
assuming that one can take a runoff measurement exactly at a cer-
tain point in time, such as at the monthly maximum runoff. This is
not possible in practice as the runoff is not known at the beginning
of a month or a year. The results in our study give an indication of
what could be achieved at best and the question is how much the
results might have been affected when the runoff was observed at
slightly different points in time. Our modelling results suggested
that there is some flexibility in taking runoff samples, because
none of the tested sampling strategies proved to be superior for
model calibration. In the case of hydrograph prediction it was most
important to sample high flows preferably in combination with
recession data. The most informative sampling strategies for simu-
lating the FDC are not very time sensitive and it was more essential
to sample a representative runoff distribution of the particular
catchment.
5. Conclusion

This study evaluated the information value of a small number of
runoff measurements for calibrating a runoff model for almost
ungauged catchments. Our calibration approach has some interest-
ing implications for the prediction of runoff in almost ungauged
catchments. It shows the potential of calibrating a runoff model
with as few as twelve strategically sampled runoff measurements.
Since the exact timing of taking runoff samples was not a major
constraint for model calibration, taking samples could be a realistic
and efficient alternative to installing a long-term gauging station.
Additionally, we applied a runoff model that only requires daily
temperature, precipitation and monthly potential evaporation as
input, which are variables often available in many regions around
the world. The proposed calibration approach could therefore be
especially valuable for water management decisions and the miti-
gation of natural hazards in data scarce regions. However, in case
of remote catchments, it might not be time and cost effective to
take twelve runoff samples distributed over a hydrological year.
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Different strategies for sampling runoff at higher time resolutions
within the duration of a short field campaign could be tested to
evaluate the value of data for these catchments. Furthermore, our
results are limited to humid catchments with little precipitation
seasonality and dominated by rain or snow processes. Further
investigations are required to evaluate the value of individual run-
off measurements, for e.g., arid and glaciated catchments or catch-
ments with a marked precipitation seasonality.
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